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Abstract

It is understood that standard contextual Bandit frameworks
don’t easily encapsulate scenarios with causal confound-
ing and multi-agent interactions. We introduce a generalized
Multi-Arm Bandit (g-MAB) formalism that covers a richer
class of sequential decision problems, thereby extending the
sequential decision theoretic literature from a causal infer-
ence perspective. We introduce a taxonomy of g-MABs based
on novel graphical criteria, and prove some foundational the-
oretical results, including the limits of counterfactual opti-
mization in such problems and the conditions which permit
the discovery of stationary and optimal solutions. We illus-
trate the performance of common Bandit algorithms on a set
of Prisoner’s Dilemma experiments and introduce a policy-
search algorithm that empirically outperforms the others.

1 Introduction
The question of how a sequential decision-making agent
ought to act has been extensively studied, with reinforce-
ment learning (RL) generally being the the default frame-
work used. However, interactions between multiple agents
have proved more complicated, and require approaches from
multi-agent RL or traditional game theory. By contrast, deci-
sion theory studies the problem in terms of a single agent’s
decision rules, preferences and utility functions (Von Neu-
mann & Morgenstern 1947; Savage 1954; Jeffrey 1983). De-
cision theory is fast gaining relevance in the design of robust
AI agents (Russell & Norvig 2010 Ch. 2, 16; Pearl 2009
Ch. 4). Decision theoretic frameworks also lend themselves
naturally to agent-vs-environment RL algorithms, and even
supervised learning (Perdomo et al 2020).

Here, one encounters several issues. First, RL and Bandit
frameworks often cannot represent even simple multi-agent
problems. Consider a popular application of Autonomous
Vehicles (AV) learning to interact. A Markov Decision Pro-
cess (MDP) cannot efficiently encode the dynamics of each
AV inferring the other’s general strategy, say by observing
recent actions, and adapting its behaviour to cooperate or
threaten to punish disruption (Cooper et al 2019). Second,
what decision theory a rational agent should follow remains
a subject of much debate. The main contenders are evidential
decision theory (Ahmed 2014) and causal decision theory
(Joyce 1999), with adversarial vulnerabilities claimed for

both (Conitzer 2015; Oesterheld & Conitzer 2021). Third,
these concerns gain poignancy in the context of AI which
introduces nuances and new challenges regarding agent self-
identity, memory and preferences (Conitzer 2019).

Causal inference is a conspicuously under-explored per-
spective in multi-agent decisions, as noted by (Perdomo et
al 2020). A line of work (e.g. Miller et al 2020) studies
strategic prediction using causal models, but are more inter-
ested in understanding rational behaviour in non-stationary
supervised learning. The theory of Structural Causal Models
(SCM) (Pearl 2009), and the concomitant agent tasks of see-
ing, doing and imagining (Sec. 2), offer powerful tools and
a vocabulary to analyse optimal interactive strategies. This
growing field of Causal RL (forthcoming) tackles several
challenges, such as using causal models to improve online
and offline learning, deciding where and whether to inter-
vene, using interventions to learn causal structure efficiently
etc. Here, we specifically address multi-agent interactions.

SCMs offer more degrees of freedom in interactions be-
tween agents. We motivate our discussion with the Greedy
Casino problem described in (Bareinboim et al 2015), in
which ordinary interventional optimization fails the agent.
Adding more arrows to the associated causal graph in that
problem essentially generalizes the Bandit framework, as
discussed in Sec. 3. Once generalized, we can then inves-
tigate some foundational questions: what decision theory is
universally optimal? Is there a limit to counterfactual Ban-
dit randomization procedures? What conditions permit a sta-
tionary optimal policy, and permit a Bandit algorithm to dis-
cover it? In answering these, our specific contributions are:

• (Sec. 4-6) Introducing a Bandit framework that general-
izes agent-environment interactions; establishing a clear
hierarchy among decision theories in scenarios that can
be represented as a generalized Bandit problem, and con-
ditions in which decision theories are equivalent.

• (Sec. 6) Proving that complex counterfactual optimiza-
tion is unrealizable under reasonable conditions.

• (Sec 5, 7) Identifying novel graphical criteria which de-
termine when the optimal strategy in a Bandit problem
is provably stationary and open-to-discovery by common
Bandit algorithms.

• (Sec 7-8) Proposing a new algorithm for Bernoulli Ban-
dits and empirically demonstrating it outperforms com-



mon algorithms in toy Prisoner’s Dilemma problems.

2 Preliminaries
Notation. We use capital letters for random variables (W ),
and small letters for their values (w). Variables are discrete
unless stated otherwise. Bolded letters represent sets of ran-
dom variables or their samples (W = {W1, ...,Wn}). We
write P (w) as shorthand for P (W = w). |W | represents
the cardinality of the variable’s domain and △W , the set of
distributions over the domain.

Structural Causal Models (SCM). An SCM, M is a tu-
ple ⟨U,V,F, P (u)⟩ (Pearl 2009). U and V are the sets
of exogenous and endogenous variables, respectively. F is
a set of structural functions by which endogenous vari-
ables are realized. For fV ∈ F, V ← fV (paV , uV ), where
PaV ⊆ V, UV ⊆ U. Once values of U are sampled accord-
ing to P (u), all endogenous variables are realized. Mw and
MσW

refer to the sub-model of M where the value of W has
been fixed by an atomic intervention W ← w or by a soft-
intervention W ← σW (Z) (Korb et al 2004), respectively.

Causal Graphs. Each SCM M induces a directed
(acyclic) graph G. GWX refers to a sub-graph of G, with in-
coming arrows to W and outgoing arrows from X removed.
GσW

refers to the sub-graph with additional arrows accord-
ing to a soft-intervention on W , as a function of other non-
descendants. (X ⊥⊥ Z|W)G means X and Z are d-separated
by W in G. Given our setting, we use filled-grey nodes to
indicate variables that are available to the agent at decision-
making time. Empty-white nodes represent observable vari-
ables which are hidden from the agent until after a policy de-
cision is made. Dotted nodes represent exogenous variables,
which are typically ommitted unless they are confounders.

Pearl Causal Hierarchy (PCH). (Bareinboim et al 2022;
Defn. 2,5,7,8) formulate the 3-layer PCH. Layer-1 (L1)
describes the observational distribution of variables P (v)
when data is collected in the absence of any interven-
tions. Layer-2 (L2) expresses the interventional quantity
P (z|do(x),w) for different z,x,w in the system. Layer-
3 (L3) determines counterfactual probabilities such as
P (yx|x′, y′), which is shorthand for ⟨(Y = y) had X been
set to x, given X was in fact x′ and Y was y′⟩. The Causal
Hierarchy Theorem (ibid.) states that these three layers are
distinct in most SCMs. In RL, L1 describes the agent’s ”de-
fault” or ”autopilot” regime, L2 the outcome of ”deliberate”
agent choices, and L3 the outcomes of hypothetical policies
”counter-to-the-fact” of actual policy choice (Forney et al
2017; Pearl & Mackenzie 2018).

3 Greedy Casino Seeks Revenge
(Bareinboim et al 2015) introduce a take on a classic deci-
sion problem featuring a Greedy Casino in Las Vegas that
employs an army of sellout data scientists to surveil its pa-
trons as they choose between 2 slot machines (the Bandit
”arms”). They discover that patron behavior can be predicted
by two variables, D,B ∈ {0, 1}, which are indicators re-
spectively for whether the patron is drunk and whether the

machines are both blinking. If X ∈ {0, 1} represents the pa-
tron choice between the 2 machines, they found that X was
determined in the SCM as X ← fX(D,B) = D ⊕B.

Assume B,D ∼ Ber(0.5). With this knowledge, they in-
stall powerful cameras on their machines and dynamically
adjust payout based on whether the machines are blink-
ing and whether the patron is drunk, as shown in Table 1.
The wiliness of this scheme is that while the average pa-
tron receives E[Y |X = 0] = E[Y |X = 1] = 0.15,
they don’t fall foul of the Nevada law that average payout
must exceed 30%. If a gaming commissioner were to sub-
ject the machines to a randomized trial, they would indeed
find E[Y |do(X = 1)] = E[Y |do(X = 0)] = 0.30. The
solution here is for Bandit agents to use the Regret Decision
Criterion (RDC) (ibid; Forney et al 2017), a counterfactual
randomization procedure where the agent ”pauses” before
acting and uses this intended action to inform a more delib-
erate decision. We expound and expand on this in Sec. 6.

D = 0 D = 1
B = 0 B = 1 B = 0 B = 1

X = 0 0.10 0.50 0.40 0.20
X = 1 0.50 0.10 0.20 0.40

Table 1: Payout rates for arms in the Greedy Casino prob-
lem; agents’ ”autopilot” choice under some D,B is in bold.

The graph of the original problem was as in Fig. 1c. Un-
fortunately, the Greedy Casino eventually wises up to the
counterfactual savvy of agents and decides to invest aggres-
sively in its technology. It considers monitoring individual
patron histories to update payouts more frequently, as shown
in Fig. 1d. For AI agents, it even wants to access the agent’s
policy directly by reading any open-source code (Tennen-
holtz 2004), or by running powerfully accurate simulations
of agents (Kuhn 2019, Sec. 7), as shown in Fig. 1e.

In short, the Greedy Casino wants to add to its interac-
tion with agents more degrees of freedom which cannot be
represented in a standard Bandit problem, impelling us to
generalize the canonical framework.

4 Generalizing Decision Problems
From a causal perspective, a regular Multi-Arm Bandit
(MAB) can be represented by an SCM where an agent
chooses a policy at time t, an action is sampled from this
policy, and a reward is drawn from an arm-specific distribu-
tion, as shown in Fig. 1a. Contextual MABs allow the re-
ward (and therefore optimal policy) to vary with a context
variable, as in Fig. 1b. (Forney et al 2017) generalize this
to MAB problems where L1 actions are influenced by un-
observed confounders (MAB-UC) as shown in Fig. 1c, re-
quiring L3-informed randomization procedures to discover
optimal policies. We further generalize this to a richer class
of MABs as defined below.

Definition 1: Generalized Multi-Arm Bandit (g-MAB).
A g-MAB is defined as a SCM M where, for each time-step
t ∈ [T ], we have the following components:



1. Action-space: A set of action ”arms” the agent can
choose from {x1, ..., xk}. ∆X is the set of all distribu-
tion over actions.

2. Intent: It ∈ ∆X represents the policy the agent would
have chosen in an L1 regime, without any deliberation.
It is introspectively available to the agent before making
a policy-decision, an assumption common in cognitive
science. This doesn’t require knowledge of all the factors
influencing one’s choice (Tversky & Kahneman 1978).

3. Policy: Πt ∈ ∆X represents the actual policy chosen by
the agent, from which the action is sampled; obviously,
πt is available at decision-making time.
In the L1 regime of M , Πt ← It (the agent follows
its autopilot behaviour)1. In the L2/L3 regime, Πt ←
σΠ(It, Ct, Ht), where agent chooses its policy by soft-
intervention using intent, context and history (defined be-
low). Fig. 1 shows black arrows already present in M ,
and red arrows added in MσΠ

.
4. Action: Xt ∈ {x1, x2...xk} represents the arm played by

the agent, where Xt ∼ πt; note, Xt is in general hidden
from the agent until after the policy is chosen (stochastic
sample), unless the policy choice is deterministic.

5. Context: Ct is any variable that influences reward, and is
available to the agent prior to decision-making; context
is allowed to influence intent and environment response
(defined below), and could be ∅.

6. Environment Response: Ot is any observable variable
that is hidden from the agent until after a decision is
made; response may influence reward, and could be ∅.

7. Reward: Yt is the Bandit payout.
8. Unobserved confounders: Ut ⊆ U is any variable that

influences multiple endogenous variables.
9. History: Ht is a special node representing the data struc-

ture of available L1, L2 and L3 information for all τ ∈
[t − 1] (empty for t = 1); as such, it has no endogenous
or exogenous parents. Ht may affect any node except
(Πt, Xt) in an L1 regime, and also Πt in L2/L3 regimes.

Essentially, at each time-step t, u is drawn from P (u),
which along with ht determines all other variables. Agents
operate either in the L1 mode (letting autopilot behaviour
determine actions) or L2/L3 mode, where they choose poli-
cies based on a decision criterion (Defn. 4).

The g-MAB formalism introduces a richer class of prob-
lems that permit more causal dependencies than familiar
MABs. For instance, Fig. 1d shows a g-MAB where envi-
ronment response depends on history and Fig. 1e has the
policy directly affecting environment response. Fig. 1e also
belongs to a category of problems recently studied by (Bell
et al 2021) under the name Newcomblike Decision Processes
(NDP), where rewards depend on (state, action, policy) tu-
ples. G-MABs make such causal relationships explicit, and
also include problems where policy is not directly read by
the environment, but indirectly inferred (e.g. from history as
in Fig. 1d). The following sections detail some fundamental
theoretical properties of g-MABs.

1M does not induce a positive observational distribution be-

Figure 1: SCMs for examples of (a) Regular MAB; (b) Con-
textual MAB; (c) MAB with Unobserved Confounders; (d)
and (e) Generalized MAB; g-MABs include familiar Ban-
dit problems, but permit more causal dependencies. Black
arrows appear in M (i.e. L1 regime); additional red arrows
appear in MσΠ

(i.e. L2/L3 regime)
.

5 Agent and Environment Capabilities
The added degrees of freedom in a g-MAB allow us to in-
vestigate problems which aren’t easily represented by reg-
ular MABs, such as those in the Sec. 8. Many of these are
adversarial in nature, where the environment (perhaps mod-
elling an actual opponent) competes with the agent. For such
problems, conceptually we could regard filled-grey nodes as
”agent-nodes” and empty-white ones as ”opponent-nodes”:
agent sees grey nodes, agent makes a decision πt, environ-
ment responds with empty nodes, and yt is determined.

Definition 2: Confoundedness of a g-MAB. A g-MAB
with graph G is said to be confounded if (Yt ̸⊥⊥ Πt|Ct)GσΠ

.
This is the familiar notion of backdoor paths (Pearl 2009)

from Πt to Yt in GσΠ
. Note, this is separate from Semi-

Markovianity (Bareinboim et al 2022). Fig. 1d is confounded
but Markovian. In a sense, this captures the agent’s capabil-

cause P (it, πt) = 0, for all it ̸= πt.



ity: it is less confident about the effect of its choices, as there
may be confounders between policy and reward.

Definition 3: Theory of mind in a g-MAB. A g-MAB
with graph G is said to have the theory of mind property if
(Yt ̸⊥⊥ Πt|Xt, Ct, It)GσΠ

.
This term is borrowed from theory of mind in psychol-

ogy (Heider 1958; Morton 1980), characterizing the envi-
ronment’s adversarial capability: it can access or infer the
agent’s actual policy. Reward cannot be screened off from
agent policy by context, intent or action. Typical MDPs
clearly do not have this property as (r ⊥⊥ π|s, a, s′). This
is also similar in function to the characterization in (Press &
Dyson 2012) of opponents with and without theory of mind
in iterated Prisoner’s Dilemma games. In Sec. 8, we offer an
agent-vs-environment framing of such games.

We make three comments. (1) Neither confoundedness
nor theory of mind implies the other in a g-MAB. Fig 1c
is confounded without theory of mind, and vice-versa in Fig.
1e. (2) A g-MAB does not need a direct arrow from Πt to
Yt to have theory of mind. Active paths could go, for in-
stance, via Ht, or via colliders at It or Ct. (3) The graph-
ical criterion in Defn. 3 empowers designers of agents to
use causal inference tools to deny the environment this spe-
cific property, such as by identifying or constructing a d-
separating set, similar to identifying adjustment-admissible
sets for handling confounding (Pearl 2009).

6 Optimal Strategy and Counterfactual
Limits

Usually, we think of a decision strategy in a MAB as a map-
ping from context to policy.2 In an SCM, (U = u) rep-
resents a realized world among many possible ones, and we
need the agent to pick some policy in each world. We ideally
want a strategy that optimizes reward in expectation over
U ∼ P (u). However, there are structural limits to an agent’s
capability to do this.

Definition 4: Decision Strategy and Criterion. Given a
g-MAB agent at time t, we have

• Decision strategy: δ is an implicit mapping from U ⇝
∆X , which tells us the policy the agent chooses in each
possible world (U = u) at time t.

• A decision criterion is an explicit rule that the agent uses
to decide on a policy πt, based on historical data. We
define 5 such criteria in Table 2.3

We abuse notation slightly and use δ(u), δ(ct), δ(it, ct)
etc. when it is clear we are mapping from (u 7→ πt), (ct 7→
πt), (it, ct 7→ πt) etc. Roughly, the criteria in Table 2 cor-
respond to letting autopilot behaviour determine action, or
optimizing using observational/experimental data. While in-
terventional designs such as randomized controlled trials

2To use graph-compatible notation, we use policy, πt, for a dis-
tribution over actions, and decision strategy for a mapping to such
a distribution. The latter is typically called a policy in MDPs.

3This distinction makes clear that an agent could theoretically
optimize policies for each specific world it encounters, and so
needs to devise rules to get as close to this as it can.

(Fisher 1935) are well-established, counterfactual optimiza-
tions of the form argmaxxE[yx|x′] were thought to be unre-
alizable except for binary treatments (Shpitser & Pearl 2007;
Pearl 2009, 341-344). (Bareinboim et al 2015; Forney et
al 2017) first provided randomization algorithms where this
counterfactual quantity can be optimized for arbitrary treat-
ment cardinality.

This raises interesting questions. First, is there is a uni-
versal hierarchy among decision criteria? Depending on an
agent’s beliefs, available compute or cost of data-collection,
it might prefer some criteria over others. Let us notate the
expected reward (over P (u)) at time t as Y ∅, Y E , Y C , Y R,
Y R†

, when the agent uses the default, evidential, causal, re-
gret and regret† decision criteria, respectively.

Theorem 5. Given a g-MAB M , we have
i Y R ≥ Y C ≥ Y E ;

ii Y R ≥ Y ∅; and
iii Y R = Y C = Y E ≥ Y ∅, if M is unconfounded

Corollary 6. There are g-MABs where Y ∅ ≥ Y C , Y E

Thm. 5(i) corroborates the intuition that optimizing using
L3 data is strictly more powerful than using lower layers.
It also directly addresses criticism of causal decision theory
(Egan 2007; Ahmed 2014). Provided alleged failure modes
can be represented as a g-MAB allowing exogenous inter-
vention (see Hitchcock 2016 for examples; Dawid 2021;
Pearl 2022), CDC strictly outperforms EDC. Any modifi-
cation of EDC that resolves such failings would need to be
isomorphic to L2-based interventional randomization.

Thm. 5(iii) allows an agent to use possibly lower-cost,
lower-variance optimization with just L1 data, provided the
g-MAB is unconfounded. Corollary 6 counter-intuitively
shows that there are g-MABs where not intervening and fol-
lowing default behaviour can be better than optimizing using
observations or interventions! This aligns with the findings
in (Lee & Bareinboim 2018), which considers only deter-
ministic optimal policies. The current setting allows opti-
mal policies to be strictly stochastic. However, counterfac-
tual randomization still fares best, per Thm. 5(ii).

A second interesting question is, given the power of L3-
randomization, can we get even better guarantees with more
complex counterfactual criteria such as RDC†? Indeed the
space of L3 queries is vast (Bareinboim et al 2022, 16-19).
Counterfactual optimization is also highly relevant to do-
mains like personalized medicine and fairness (Mueller &
Pearl 2022; Plecko & Bareinboim 2022). We may specifi-
cally want to customize treatment for individuals who would
have had a certain outcome, or deliberately pick a sub-
optimal criterion which satisfies a counterfactual fairness
consideration. However, we prove below that no experiment
exists that can solve such higher order counterfactual opti-
mizations under realistic assumptions.

Theorem 7. Given a g-MAB M at time t, where Yt

cannot be fully determined by a soft-intervention Πt ←
σΠ(It, Ct, Ht), RDC† cannot be realized by any experiment.

Non-determinism of the reward is a weak assumption for
most g-MABs, where Yt is typically sampled from an (arm-
specific) distribution. I.e., it has an independent source of



Decision Criterion PCH Layer Type of data used Output (stochastic) Output (deterministic)
Default (∅) L1 - (Π;U = u) (X;U = u)

Evidential (EDC) L1 Observational argmax
π

E[Y |π, c] argmax
x

E[Y |x, c]

Causal (CDC) L2 Interventional argmax
π

E[Y |do(π), c] argmax
x

E[Y |do(x), c]

Regret (RDC) L3 Counterfactual argmax
π

E[Yπ|π′, c] argmax
x

E[Yx|x′, c]

Regret† (RDC†) L3 Counterfactual argmax
π

E[Yπ|π′, y′, c] argmax
x

E[Yx|x′, y′, c]

Table 2: Examples of criteria agents can use at time t; default decision criterion corresponds to not intervening, letting autopilot
behaviour pick policies; others involve optimizing policy choice using observational, interventional or counterfactual data.

exogenous noise UY . The upshot of Thm. 7 is that RDC
sets the theoretical limit of counterfactual experimentation
for a Bandit agent. If RDC† cannot be realized, an agent
needn’t worry about more complex criteria like maximizing
E[Yx|yx′ , x′], E[Yx|yx′ , y′, x′], E[Yx|ox′ , y′] etc in the non-
parametric setting. However, under parametric assumptions
like exogeneity, monotonicity (Tian & Pearl 2000), or for
certain graph families (Zhang et al 2022), we may be able to
compute or bound such queries.

We have yet to discuss actual algorithms that can discover
these policies. We next cover some results on the stability of
optimal strategies.

7 Optimal Strategy and Stability
We have so far indexed variables with a time-step. However,
the virtue of a Bandit setup is that the agent doesn’t track
history as contextual information.

While we can regard the agent’s decision strategy as a
mapping (u 7→ πt), the agent only observes (It, Ct =
π′
t, ct), at decision-making time. Using this, we can con-

sider an optimal strategy to be one that maximizes∑
π′
t,ct

P (π′
t, ct)E[Yπt

|π′
t, ct].

4 Further, it would be useful
to know under what conditions this optimal strategy is sta-
ble, in at least two senses.

Theorem 9. If a given g-MAB M is unconfounded or does
not have theory of mind, the optimal decision strategy is con-
stant ∀t ∈ N (stationary).

This means we can stably over time handle g-MABs with
confoundedness or with theory of mind, but not always both.
As we shall see for the experiments in Sec. 8, the Bandit
framework may be insufficient for such cases. However, pro-
vided a stationary optimal strategy (whether or not by the
condition in Thm. 9), we can effectively drop the time-stamp
t for the decision problem.

Definition 10: Nash equilibrium. Given a g-MAB at time
t, a decision strategy (πt|π′

t, ct) = δ(π′
t, ct) is said to be a

Nash equilibrium at (π′
t, ct) iff

E[Yπt,x|π′
t, ct] = max

x′
E[Yπt,x′ |π′

t, ct],∀x ∈ supp(πt)

4Recall, (It = π′
t) means that Πt would have been π′

t in the
L1/observational regime.

This notion has received a lot of attention recently, un-
der the names performative stability in supervised learning
(Perdomo et al 2020) and ratification in the NDP frame-
work in (Bell et al 2021). This could be loosely seen as a
single-agent sequential counterpart to Nash and Stackelberg
equilibria (Korzhyk et al 2011; Weirich 1999) in multi-agent
games, but with opponents abstracted into environment dy-
namics. Intuitively, this refers to a decision strategy where,
given a context, no action outside the support of the policy
chosen by the strategy has a greater expected reward than
those actions supported by said policy.5

Lemma 11. An agent using a value-greedy Bandit algo-
rithm in a g-MAB can only converge to a (stationary) strat-
egy that is a Nash equilibrium.

Theorem 12. Given a g-MAB M at time t which does not
have theory of mind, any optimal strategy is a Nash equilib-
rium.

Of course, Thm. 12 is only a possibility result for conver-
gence, not a guarantee. Lemma 11 is well understood outside
the RL framework, in traditional game theory: when play-
ers engage in ”fictitious play”, any convergence is only to a
Nash equilibrium (Fudenberg & Levine 1998). In decision
theory, (Weirich 1999) showed that if all players follow a
”self-supporting” strategy (a form of ratification, mentioned
earlier), the result is an equilibrium. (Bell et al 2021, Thm.
2) also prove Lemma 11 for a NDP Bandit (e.g. as in Fig 1c).
Our extension to the general g-MAB case is straightforward.
This result means usual Bandit algorithms are insufficient to
handle many simple problems such as in Sec. 8. To the best
of our knowledge, discovering optimal policies in g-MABs
with theory of mind is an open area of research. Our Defn.
10 analyzes such equilibria in terms of simultaneous L2 in-
terventions on both Πt and Xt, which hopefully informs the
design of algorithms to avoid the constraint in Lemma 11.

Common Bandit algorithms like EXP3 or Thompson
Sampling (TS) are value-greedy in that they always seek
out arms with higher expected reward, even if it means the
expected reward for the overall policy is lowered. Lemma 11

5Defn. 10 is not a Nash equilibrium in the strict game theo-
retic sense, where an opponent’s counter-policy must be optimal as
well. Here, it is used to describe the simultaneous-move nature of
a Bandit agent-vs-environment equilibrium.



Figure 2: An emerging taxonomy of equilibrium and station-
arity of Generalized Multi-Arm Bandit (g-MAB) problems

.

tells us that these algorithms will fail to discover the global
optimal strategy if it is not a Nash equilibrium. We need
some way of searching over the policy space directly.

We propose in Algo. 1 a policy-search algorithm TPSC

that approximates the optimal solution for g-MABs with
Bernoulli actions. We essentially discretize the policy space
and optimize over the mid-points of ranges, with agent ac-
tions being sampled from one of these policies. We consider
Gaussian priors over the parameters of each policy choice,
updated with each pull. This is a proof-of-concept which es-
tablishes an empirical upper bound on complexity (it would
become intractable for larger action spaces). Note that this
is more efficient than merely treating intention as a context
variable, which we demonstrate empirically in the next sec-
tion. In Line 7, we seed the priors for E[Yπ′ |π′],∀π′ by using
past observational data Pobs(Y |π′) based on the counterfac-
tual consistency axiom (Pearl 2010), which gives us

P (yx|z, x) = P (y|z, x);∀z (1)

To the best of our knowledge, this is the first algorithm
attempting to find an optimal solution to this problem. We
next empirically test TPSC on toy decision scenarios.

8 Experiments
In this section, we investigate three versions of the canonical
Prisoner’s Dilemma (PD), which cannot be described by a
typical Bandit. Multi-agent RL approaches to this problem
have long been studied (Sandholm & Crites 1996). (Leibo et
al 2017) explore the distinction between cooperative policies
and actions in PD-like games, and (Wang et al 2019) discuss
how agents respond to opponents with changing strategies in
PD. We present a single-agent perspective on this problem
as represented by a generalized MAB.

The general setup involves an agent and an opponent who
must each decide between two actions: Cooperate (a0) and
Defect (a1). The agent’s payout table is per Fig. 3a. In the
following experiments, we assume the opponent values reci-
procity and always strives to act as it expects the agent to.

Algorithm 1: Causal Thomson Policy Sampling (TPSC) for
Bernoulli Bandits
Input: Pobs, T
Parameter: k ; (discretization)

1: Let {π1, ...πk} be midpoints in discretized domain of Π.
2: {ri,j , ni,j} ← {0, 1},∀i, j ∈ [k], i ̸= j
3: for τ = 1, ..., T do
4: π′ ← intention(τ) ; (get intention for trial)
5: µi,j ← ri,j/ni,j

6: θ̂i ∼ N (µi,π′ , (1/ni,π′)),∀i ∈ [k] \ π′

7: θ̂π′ ← Pobs(Y |π′) ; (consistency axiom)
8: i← argmax

j
(θ̂j)

9: y ← pull(πi)
10: if i = π′ then
11: Pobs(Y |π′)← update
12: else
13: ri,π′ ← ri,π′ + y
14: ni,π′ ← ni,π′ + 1
15: end if
16: end for

Experiment 1. The opponent decides its action at time t
by estimating the agent’s current policy based on recent his-
tory. It computes an exponential moving average of agent’s
historical actions to get a distribution over actions, and then
samples its action from this policy. The graph of the cor-
responding g-MAB is in Fig. 3b. This graph has both con-
founding and theory of mind.

From Thm. 9, we cannot guarantee a stationary optimal
policy. However, we constrain the agent to only change its
policy smoothly and slowly. For a small enough threshold
speed of change, and an unbiased opponent prior (at t1), we
do have a stationary optimal policy: {a0 : 1.0, a1 : 0.0}
(always-Cooperate). It can be verified that this is not a Nash
equilibrium, since given this policy, the opponent will also
Cooperate, and Defect would have higher expected reward
for the agent.

Sure enough, we find value-greedy algorithms EXP3
and TS fail to discover the optimal policy, as shown by
the cumulative regret being linear in T in Fig. 3e (averaged
over 100 runs). In fact, they diverge to the policy of always-
Defect (which is a Nash equilibrium), as shown in S.I. Re-
laxing the constraint on rate of change does not help, and in
fact would worsen the speed of divergence.

Experiment 2. Consider a modification of Experiment 1
where the opponent feels observing history is not enough,
and invests heavily to directly read agent policy at decision-
time (e.g. by analyzing the agent’s open-source code or run-
ning a simulation of the agent at decision-time). The graph
now corresponds to Fig. 3c. This g-MAB has theory of mind
but is unconfounded, so we are guaranteed a stationary op-
timal policy, which happens to remain {a0 : 1.0, a1 : 0.0}
(always-Cooperate).

Still, we find that EXP3 and TS fail to discover the
optimal policy, as would any other value-greedy algorithm,



Figure 3: (a) Agent payout table for Prisoner’s Dilemma; Causal graphs of (b) Experiment 1, (c) Experiment 2, and (c) Ex-
periment 3; Cumulative regret over training lifetime (T = 10, 000) averaged over 100 runs, shown for (e) Experiment 1, (f)
Experiment 2, and (g) Experiment 3; TPSC shows sub-linear regret, indicating convergence to optimal policy, whereas EXP3
and TS appear to fail to converge; TPSC also outperforms TPS which does not use counterfactual consistency seeding. Here,
TPS and TPSC use a discretization of 10.

since it is not an equilibrium.6. However, the TPSC is able
to identify the optimal policy region, as shown by the sub-
linear cumulative regret in Fig. 3f. Convergence of TPSC

to the optimal policy is shown in S.I.

Experiment 3. Let us add more detail. Suppose the oppo-
nent has a limited surveillance budget. It decides to first read
the agent’s policy state 10 seconds before decision-making
using a cheaper, delayed technology. If it sees the agent in-
tending to Defect w.p. P (a1) < 0.5, it uses the intended
policy as basis for its own action. If the agent intends to De-
fect w.p. P (a1) ≥ 0.5, it switches to real-time monitoring
until actual decision-time and samples its action from the
agent’s realized policy. The graph for this g-MAB is in Fig.
3d, and has both confounding and theory of mind.

The opponent’s methodology happens to yield a station-
ary optimal strategy: the agent introspects 10 seconds before
decision-time. If P (a1) < 0.5 agent chooses {a0 : 0.0, a1 :
1.0} (always-Defect). If P (a1) ≥ 0.5 agent chooses {a0 :
1.0, a1 : 0.0} (always-Cooperate). In either case, the sole
equilibrium for this problem remains to always-Defect.

Once again, EXP3 and TP incur significantly more cu-
mulative regret over 10,000 episodes (averaged over 100
runs), while TPSC demonstrates optimal convergence. In
fact, the results in Fig. 3g also clearly shows TPSC outper-
forms a version of the same algorithm, TPS, that does not
use the counterfactual consistency axiom, and merely treats
prior intent as a context variable. Details are in S.I.

Discussion. Prisoner’s Dilemma often appears as a useful
proxy for real-world scenarios. We used the g-MAB frame-

6To apply a confidence-bound algorithm here, it would need
to be modified to allow stochastic policies over arms. UCB-style
algorithms deterministically choose an argmax arm in each round.

work to study 3 such PD scenarios which cannot be rep-
resented as conventional Bandit problems. We showed how
common algorithms can fail to discover even simple optimal
strategies. We proposed an algorithm that searches directly
over the policy space, and empirically tested its outperfor-
mance of EXP3 and TS. As mentioned, this is a proof-of-
concept, and becomes intractable for large action spaces as
discretizing the policy simplex is exponential in |Xt|. One
possible solution could come from Bandits with continuous
action spaces (Agrawal 1995). Discretization of continuous
actions is famously ignorant of underlying geometry (Kr-
ishnamurthy et al 2019), so emerging methods combine this
with smoothing operations over each interval in an efficient
way (Majzoubi et al 2020). We leave this to future work.

9 Conclusion
Multi-agent problems are not easy to analyse in regular Ban-
dit frameworks, requiring multi-agent RL or game theoretic
formulations. We introduced a generalized Multi-Arm Ban-
dit (g-MAB) formalism that can represent a rich class of
interactive problems, thereby extending the fields of deci-
sion theory and causal RL. We established a universal hi-
erarchy among decision theories in all problems that can
be represented as a g-MAB, directly addressing the contro-
versy between evidential and causal theorists, and proved
that higher order counterfactual optimization cannot be real-
ized by any physical experiment. We developed a taxonomy
of g-MABs based on novel graphical conditions which guar-
antee stationary optimal strategies, and under which com-
mon Bandit algorithms cannot discover optimal policies. We
proposed a policy-search algorithm which for the first time
approximates the optimal solution for a general Bernoulli
g-MAB, and demonstrated its performance against popular
algorithms. We believe the g-MAB framework provides a



powerful and efficient causal toolkit to complement other
perspectives in the design of safe and optimal AI agents.
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B SUPPLEMENTARY MATERIAL AND PROOFS
Proof of Theorem 6
Let us use the following notation:
• πE = δEDC(ct), to refer to the policy chosen by EDC at time t, given a context ct
• πC = δCDC(ct), to refer to the policy chosen by CDC at time t, given a context ct

We can assume ties are broken arbitrarily in for multiple argmax.

Theorem 6(i). Given a g-MAB M , we have Y R ≥ Y C ≥ Y E .

Proof.

Y R =
∑
π′
t,ct

max
π

E[Yt|do(Πt = π), π′
t, ct].P (π′

t, ct) definition (2)

=
∑
it,ct

max
π

E[Yt|do(Πt = π), it, ct].P (it, ct) (Πt = It) in M (3)

≥
∑
it,ct

E[Yt|do(Πt = πC), it, ct].P (it, ct) true for any πt ̸= argmax (4)

=
∑
it,ct

E[Yt|do(Πt = πC), it, ct].P (it|ct).P (ct) (5)

=
∑
it,ct

E[Yt|do(Πt = πC), it, ct].P (it|do(Πt = πC), ct).P (ct) Rule 3: (It ⊥⊥ Πt|Ct)G
σΠ(Ct)

(6)

=
∑
it,ct

E[Yt, it|do(Πt = πC), ct].P (ct) (7)

=
∑
ct

E[Yt|do(Πt = πC), ct].P (ct) (8)

= Y C definition (9)

=
∑
ct

max
π

E[Yt|do(Πt = π), ct].P (ct) definition (10)

≥
∑
ct

E[Yt|do(Πt = πE), ct].P (ct) true for any πt ̸= argmax (11)

= Y E definition (12)

Eqn. (6) uses Rule 3 from do-calculus (Pearl 2009). With incoming arrows to Πt removed, the only outgoing arrow can be to
Ot, Yt or Xt. It can be easily verified that the d-separation condition holds for any configuration of the g-MAB due to colliders
at Ot, Yt and (possibly) Xt.

NB:
• On Eqn. (11): in general, Y E =

∑
ct
E[Yt|do(Πt = πE), ct].P (ct) ̸=

∑
ct
max

π
E[Yt|(Πt = π), ct].P (ct). See Lemma 13.

• EDC is peculiar in that it optimizes over L1/observational data, but enacts its policy as an intervention. In general, there
is no guarantee that the policy which has worked best in autopilot mode will provide the same expected reward under an
intervention, as it did under default behaviour.

• In this an subsequent proofs we use the summation sign with Πt and It, for succinctness of notation. These would need to
be integral signs in the general case.



Theorem 6(ii). Given a g-MAB M , we have Y R ≥ Y ∅.

Proof.

Y R =
∑
π′
t,ct

max
π

E[Yt|do(Πt = π), π′
t, ct].P (π′

t, ct) definition (13)

≥
∑
π′
t,ct

E[Yt|do(Πt = π′
t), π

′
t, ct].P (π′

t, ct) true for any πt ̸= argmax (14)

=
∑
π′
t,ct

E[Yt|π′
t, ct].P (π′

t, ct) Consistency axiom: Eqn. (1) (15)

= Y ∅ definition (16)

Lemma 13. If a g-MAB M is unconfounded, Y E =
∑

ct
max

π
E[Yt|(Πt = π), ct].P (ct).

Proof.
(πE |ct) = argmax

π
E[Yt|(Πt = π), ct] definition (17)

Y E =
∑
ct

E[Yt|do(Πt = πE), ct].P (ct) definition (18)

=
∑
ct

E[Yt|(Πt = πE), ct].P (ct) Rule 2: (Yt ⊥⊥ Πt|Ct)GσΠ
(19)

=
∑
ct

max
π

E[Yt|(Πt = π), ct].P (ct) by Eqn. (17) (20)

The condition for rule 2 in Eqn. (19) is the definition of unconfoundedness of the g-MAB. As stated at the end of the proof of
Thm. 6(i), this condition is not true in general.

Theorem 6(iii). Given a g-MAB M , we have Y R = Y C = Y E ≥ Y ∅, if M is unconfounded.

Proof.

Y R =
∑
π′
t,ct

max
π

E[Yt|do(Πt = π), π′
t, ct].P (π′

t, ct) definition (21)

=
∑
it,ct

max
π

E[Yt|do(Πt = π), it, ct].P (it, ct) (Πt = It) in M (22)

=
∑
it,ct

max
π

E[Yt|do(Πt = π), ct].P (it, ct) Rule 1: (Yt ⊥⊥ It|Ct)GσΠ
(23)

=
∑
ct

max
π

E[Yt|do(Πt = π), ct].P (ct) (24)

= Y C definition (25)

=
∑
ct

max
π

E[Yt|(Πt = π), ct].P (ct) Rule 2: (Yt ⊥⊥ Πt|Ct)GσΠ
(26)

= Y E Lemma 13 (27)

≥
∑
ct,πt

E[Yt|(Πt = π), ct].P (ct, πt) true for any πt ̸= argmax (28)

= Y ∅ definition (29)

The conditions for the rules applied in Eqns. (23) and (26) as a consequence of the g-MAB being unconfounded. Removing
outgoing arrows from Πt, there are no back-door paths which cannot be blocked by Ct.



Proof of Corollary 7

Let us use the following notation:

• πE = δEDC(ct), to refer to the policy chosen by EDC at time t, given a context ct
• πC = δCDC(ct), to refer to the policy chosen by CDC at time t, given a context ct

Corollary 7. There are g-MABs where, Y ∅ ≥ Y C , Y E .

Proof. We show this by example. Consider the g-MAB M with a graph as shown in Fig. 4 and specified as follows. W.L.O.G,
we only allow deterministic policies for this g-MAB.

M
Ut ∼ Bernoulli(0.5)
It ← Ut

Πt ← It
Xt ← Πt

Yt ← ¬Ut ⊕Xt

Figure 4: Graph for an example g-MAB illustrating Corollary 7
.

Under the default decision criterion (no intervention; autopilot behaviour), we have

Y ∅ =
∑
ut

E[Yt|ut].P (ut) (30)

= 0.5(E[Yt|Ut = 1] + E[Yt|Ut = 0]) (31)
= 0.5(E[¬Ut ⊕Xt|Ut = 1, Xt = 1] + E[¬Ut ⊕Xt|Ut = 0, Xt = 0]) (32)
= 1 (33)

Under the evidential decision criterion (intervention; optimization using L1 data), we have

πE = argmax
π

E[Yt|(Πt = π)] definition (34)

= {0, 1} both actions give reward=1 in L1
(35)
(36)

Y E =
∑
ut

E[Yt|do(Πt = πE), ut].P (ut) definition (37)

= 0.5(E[Yt|do(Xt = 1), Ut = 1] + E[Yt|do(Xt = 1), Ut = 0]) (38)
= 0.5(E[¬Ut ⊕Xt|Ut = 1, do(Xt = 1)] + E[¬Ut ⊕Xt|Ut = 0, do(Xt = 1)]) (39)
= 0.5(1 + 0) (40)
= 0.5 (41)



Under the causal decision criterion (intervention; optimization using L2 data), we have

πC = argmax
π

E[Yt|do(Πt = π)] definition (42)

= {0, 1} both actions give reward=0.5 in L1 (43)
(44)

Y C =
∑
ut

E[Yt|do(Πt = πC), ut].P (ut) definition (45)

= 0.5(E[Yt|do(Xt = 1), Ut = 1] + E[Yt|do(Xt = 1), Ut = 0]) (46)
= 0.5 (47)

Here, we have an example of a g-MAB where Y ∅ > Y E , Y C .



Proof of Theorem 8

Figure 5: Examples of g-MABs that don’t permit RDC† in red, and an example that does in green; most SCMs assume each
node has an exogenous source of variation, but some toy game theoretic problems may involve a reward fully determined by
agent and opponent action

.

Lemma 14. Given a g-MAB M where Yt cannot be fully determined by a soft-intervention Πt ← σΠ(It, Ct, Ht), ∃UY ∈
U ∪Ht s.t. there is a directed path UY → ...→ Yt which does not pass through Πt or Ct.

Proof. It is easy to see that, if we cannot determine Yt solely by the soft intervention described, then among the arguments for
a deterministic function for Yt, there must be some source of variation that is not fully captured by (Πt, Ct). If every exogenous
node (inc. history) that has a directed path to Yt always reaches Yt only via Πt or Ct, then given (Πt, Ct), Yt is d-separated
from any exogenous source of noise or intervention (i.e., is fully determined).

Finally, no exogenous node can have a directed paths to Yt via It but not via Πt. Recall that It has only one outgoing arrow, to
Πt, so any direct path into It goes further onward solely via Πt.

In typical g-MABs, Lemma 14 is satisfied by there simply being a UY with a sole outgoing arrow to Yt. But this definition also
caters for g-MABs where Yt is fully determined given Xt and an environment response Ot, in which case UY would be the
independent source of variation for Ot, or the sampling variation of Xt. It also refers to unobserved confounders that do have a
directed path to Πt or Ct, because these also have a separate directed path to Yt. We use the label UY W.L.O.G.

Lemma 15. Given a g-MAB M where Yt cannot be fully determined by a soft-intervention Πt ← σΠ(It, Ct, Ht), let UY be
the set of all UY that satisfy the condition in Lemma 13. Then, Yt can be fully determined by UY and (Πt, Ct) in M and in
MσΠ

.

Proof. This follows from Lemma 14.

In M , (Yt ⊥⊥ U \ UY|Πt, Ct). I.e., it is independent from any other source of interventional or exogenous variation, by
definition of UY. In MσΠ

, we can only add a (possibly) new arrow from Ct or Ht to Πt. This would not affect the condition
(Yt ⊥⊥ U \UY|Πt, Ct) since Yt − Ct −Πt cannot be a collider.

Lemma 16. Given a g-MABs M , in general if the agent cannot estimate P (yπt |π′
t, y

′
t, ct) for y ̸= y′, RDC† cannot be

computed.

Proof. W.L.O.G., consider the case where Yt is binary. In order to compute RDC†, given some conditioning set (π′
t, y

′
t, ct), the

agent needs to compute argmax
πt

E[Yπt |condition] = argmax
πt

P (Yπt = 1|condition).

The mapping from ⟨πt 7→ P (Yπt
= 1|condition)⟩ could be any arbitrary, possibly discontinuous, function. As long as

P (Yπt
= 1|condition) < 1, we can define arbitrary g-MABs where the mappings are such that we need to be able to estimate

P (Yπt
= 1|condition) for any πt to be able to compute the argmax. This includes g-MABs where the conditioning event is

(π′
t, ct, Yt = 0).



(Note that the actual computation of the argmax may need to involve discretization or PAC-learning, if the space of Πt is
continuous. But this is unrelated to the Lemma statement.)

Theorem 8. Given a g-MAB M at time t, where Yt cannot be fully determined by a soft-intervention Πt ← σΠ(It, Ct, Ht),
RDC† cannot be realized by any experiment.

Proof. For clarity of exposition let us drop the time subscript t. By Lemma 16, we have that, in general, an agent would need
to be able to compute P (yπ|π′, y′, c) for (y ̸= y′) in order to realize RDC†. Note that Lemma 15 places no restriction on what
type of g-MAB needs this requirement, in the non-parametric setting.

Let UY be the exogenous variables (noise, and possibly history at time t) defined in Lemma 14. From Lemma 15, we have
that Y is determined by the mapping Π × C ×UY ⇝ Y . Let us note that in M (L1 regime), (I = Π), so we have that Y is
determined by the mapping I × C ×UY ⇝ Y in M .

Let us consider the event whose probability is the query P (yπ|π′, y′, c). The event is short-hand for

i. I, C,UY are such that Y = y′ in M (i.e. L1 regime); and
ii. Π, C,UY are such that Y = y in MσΠ (i.e. L2/L3 regime); given

iii. I, C,Π

Since the only unknown in the deterministic function of Y in both MσΠ
and M is UY, this query represents the probability

mass on the values in the domain of UY s.t. the event conditions i-iii are satisfied.

Consider first the scenario where the directed paths from UY to Y that don’t pass through Π or C (the paths described in
Lemma 14) are not all mediated by X or O. I.e., this is the scenario that Y directly receives an un-mediated exogenous noise.
Given that UY cannot be directly measured, the only way to gauge whether the un-mediated component of UY is in the part
of the domain compatible with a certain value (Y = y) is to actually observe (Y = y). In other words, the only way to gauge
whether the un-mediated component of UY is in the part of the domain compatible with event condition i (respectively, ii) is
to actually observe Y = y′ (respectively, Y = y).

The crux of this proof is that, at time t, in order to observe Y = y′ (respectively, Y = y) to satisfy event condition i
(respectively, ii), the physical process of L1/observation (respectively, L2/L3 experimentation) that produced this outcome has
already been realized. Even if we were to repeat the learning under event condition iii (perhaps even rewinding to the t − 1
check-point in simulation), and we observe Y = y (respectively, Y = y′), we will only know the un-mediated component
of UY is compatible with event condition ii (respectively i). Since it is not possible for any experiment to know that the
un-mediated component of UY simultaneously satisfies event condition i and ii, given iii, the query cannot be estimated. By
Lemma 14, RDC† cannot be realized by any experiment.

For completeness, let us consider the scenario that there is no un-mediated noise directly affecting Y , and that UY is always
mediated through X and/or O. The same argument in the previous paragraph can be extended by replacing ”Y = y” with
”(X = x,O = o) such that Y = y”, and ”Y = y′” with ”(X = x,O = o) s.t. Y = y′”.

Definition 16: Interceptibility. If a node W is said to be interceptible in a g-MAB M if it satisfies:
• ∃Z ⊆ An(W ) s.t. An(W ) \De(Z) = An(Z) \ Z; and
• Z is available at decision-making time
Z is called its interception set. Essentially, W is interceptible if it can be fully determined as a function of variables which are
available at decision-making time. As a special case, Πt is interceptible with interception set It because this is available to the
agent via introspection. Also, by definition, all nodes that are themselves available at decision-making time are interceptible,
with interception sets as themselves.



Figure 6: Examples of nodes which are interceptible and which are not; interceptible nodes can be used in an optimization
criterion

.

Proof of Theorem 9

Let us use the notation:
• πO

t = δOt (π′, c) to refer to an optimal policy at time t, given an arbitrary (π′, c)

Assumption 17. The g-MAB M described in this theorem is such that:
i. Exogenous variables U have the same distribution, at all t.

ii. Structural equation fV remains the same for V ∈ V, at all t.
NB: This does not stop history, Ht, from affecting variables, including exogenous ones. The SCM can be re-parameterized to
have Ht affect the relevant endogenous variables.

Theorem 9. If a given g-MAB M is unconfounded or does not have theory of mind, the optimal decision strategy is constant
∀t ∈ N (stationary).

Proof.

Et[YπO
t
|π′, c] = max

π
Et[Yπ|π′, c] definition (48)

Case 1. M is unconfounded

We have that (Yτ ⊥⊥ Πτ |Cτ )GσΠ
for τ = t, t′. This means, given (Cτ = c), any active path from Πτ to Yτ is only via a directed

causal path.

I.e.,

Given (Cτ = c), do(Πτ = π) has the same causal effect on Yτ , ∀τ = t, t′ (49)

Et[YπO
t
|c] = max

π
Et′ [Yπ|c],∀t, t′ by Line (49) (50)

Et[YπO
t
|π′, c] = max

π
Et′ [Yπ|π′, c],∀t, t′ Rule 1: (Yτ ⊥⊥ Iτ |Cτ )GσΠ

(51)

Rule 1 applies in Eqn. (51) because any back-door path from Yτ to Iτ not via Cτ would introduce confounding that we are
assuming does not exist.

Case 2. M does not have theory of mind



We have that (Yτ ⊥⊥ Πτ |Xτ , Iτ , Cτ )GσΠ
for τ = t, t′. This means, given (Iτ , Cτ = π′, c), any active path from Πτ to Yτ is

only via a directed causal path through Xτ .

I.e.,

Given (Iτ , Cτ = π′, c), do(Πτ = π) has the same causal effect on Yτ , ∀τ = t, t′ (52)

Et[YπO
t
|π′, c] = max

π
Et′ [Yπ|π′, c],∀t, t′ by Line (52) (53)

Eqns. (51) and (53) conclude the proof showing that if πO
t is the optimal policy at t, it is also the optimal policy at t′ ̸= t, for

some arbitrary observed (π′, c).



Proof of Lemma 11

Given a g-MAB, M , let us assume that a Bandit algorithm converges to a terminal strategy δ∗(it, ct) = (π∗|it, ct).

Assumption 18. The value-greedy Bandit algorithm described in this Lemma meets the following criteria:
i. The number of times each arm is explored over the learning sequence is infinite in the limit, as t→∞

ii. limt→∞ P (E[Yπt,x|π′
t, ct] ≤ maxx′ E[Yπt,x′ |π′

t, ct]− δ) = 0, ∀x ∈ supp(πt) and δ > 0

Assumption 18(i) limits the consideration to algorithms that allow for infinite exploration, such as EXP3 and Thompson
Sampling (TS) (NB: these algorithms still allow for convergence to a deterministic policy in the limit). However, this
assumption excludes from consideration confidence-bound based algorithms such as the standard version of UCB, where
exploration of sub-optimal arms stops after a finite number of time-steps. UCB, in its standard form, also does not allow the
discovery of optimal policies which are strictly stochastic.

Assumption 18(ii) states that the algorithm behaves greedily w.r.t. the expected reward of each arm, regardless of the
policy which chose the arm. This is a standard feature of model-free Bandit algorithms, which update their preference
weights for each arm based on the reward sampled under arm-pulls, without tracking the underlying policy. The condition
states that, as the algorithm’s policy converges to δ∗, the probability of it choosing actions which are sub-optimal (given the
current πt) compared to the actions that are not chosen tends to 0. It can be easily verified that EXP3 and TS obey this feature.

Lemma 11. An agent using a value-greedy Bandit algorithm in a g-MAB can only converge to a (stationary) strategy that is
a Nash equilibrium.

Proof. As (Bell et al 2021, Thm. 2) observes, this simply follows from Assumption 18(ii). The arguments extend to any SCM.

Let x′ be a ”sub-optimal” arm given π∗, meaning that ∃δ > 0 such that

E[Yπ∗,x′ |π′
t, ct] ≤ max

x
E[Yπ∗,x|π′

t, ct]− δ (54)

Since πt → π∗, for a large enough t, we have that

E[Yπt,x′ |π′
t, ct] ≤ max

x
E[Yπt,x|π′

t, ct]−
δ

2
(55)

By Assumption 18(ii), we have the probability of picking such an arm x′ tends to 0 in the limit, thus giving us

lim
t→∞

πt(x
′) = π∗(x′) = 0, given (it, ct) (56)

(π∗|it, ct) always places zero weight on such ”sub-optimal” actions. In other words, the terminal strategy always satisfies the
equilibrium condition in Defn. 10.



Proof of Theorem 12

Let us use the notation:
• πO = δO(π′

t, ct) to refer to an optimal policy at time t, given (π′
t, ct)

Theorem 12. Given a g-MAB M at time t which does not have theory of mind, any optimal strategy is a Nash equilibrium.

Proof.

E[YπO |π′
t, ct] = max

π
E[Yπ|π′

t, ct] definition (57)

E[YπO |π′
t, ct] ≤ max

x′
E[YπO,x′ |π′

t, ct] (58)

= max
x′

E[Yx′ |π′
t, ct] Rule 3: (Yt ⊥⊥ Πt|It, Ct)G

XtΠt(It,Ct)
(59)

Rule 3 applies here because we are guaranteed that M does not have the theory of mind property, which means (Yt ⊥⊥
Πt|Xt, It, Ct)GσΠ

. Let us define πG to be a greedy policy that deterministically chooses an argmax arm which maximizes
the quantity in Eqn. (53).

E[YπO |π′
t, ct] ≤ E[YπG |π′

t, ct] Eqn. (52), (53) (60)

E[YπO |π′
t, ct] = E[YπG |π′

t, ct] Eqn. (51) (61)

= max
x′

E[Yx′ |π′
t, ct] definition (62)

= max
x′

E[YπO,x′ |π′
t, ct] Rule 3: (Yt ⊥⊥ Πt|It, Ct)G

XtΠt(It,Ct)
(63)∑

x∈supp(πO)

πO(x).E[YπO,x|π′
t, ct] = max

x′
E[YπO,x′ |π′

t, ct] definition (64)

E[YπO,x|π′
t, ct] = max

x′
E[YπO,x′ |π′

t, ct] ∀x ∈ supp(πO) (65)

The last step of the proof is simply because each term in the weighted average on the LHS of Eqn. (58) is individually
upper-bounded by the RHS, and is non-negative. Therefore each term must be equal to the RHS.

The last line gives the condition for πO to be a Nash equilibrium at arbitrary (π′
t, ct).



Details of (non-causal) Thompson Policy Sampling (TPS)
This version of Thompson Sampling also discretizes the Bernoulli policy space and converges to the optimal policy range.
However, it does not make use of the counterfactual consistency axiom (refer to Sec. 7 for an explanation), whereas TPSC is
able to use past observational data to seed the policy-arm priors when the consistency conditions are satisfied (Lines 7 and 11
in Algo. 1).

Algorithm 2: Thomson Policy Sampling (TPS) for Bernoulli Bandits
Input: T
Parameter: k ; (discretization)

1: Let {π1, ...πk} be midpoints in discretized domain of Π.
2: {ri,j , ni,j} ← {0, 1},∀i, j ∈ [k], i ̸= j
3: for τ = 1, ..., T do
4: π′ ← intention(τ) ; (get intention for trial)
5: µi,j ← ri,j/ni,j

6: θ̂i ∼ N (µi,π′ , (1/ni,π′)),∀i ∈ [k]

7: i← argmax
j

(θ̂j)

8: y ← pull(πi)
9: ri,π′ ← ri,π′ + y

10: ni,π′ ← ni,π′ + 1
11: end for



Details of Experimental Set-Up
Common details across experiments:

• Number of episodes per experiment, T = 10, 000

• Each experiment was repeated 100 times, and the results were averaged to get representative charts
• Agent reward for each episode as per payout table in Fig. 7

Figure 7: Payout table for Prisoner’s Dilemma
.

Experiment 1

Figure 8: Graph for the g-MAB in Experiment 1
.

Optimal policy πO(a0) = 1.0;πO(a1) = 0.0

Nash equilibrium πE(a0) = 0.0;πE(a1) = 1.0

Is optimal policy an equilibrium? No

Table 3: Optimal and equilibrium policy for Experiment 1

Agent policy:

• Chosen according to algorithms EXP3 and TS

• Agent is constrained to only update its policy at a small speed (i.e. its Bernoulli probability of picking a1 at episode t must
be within a range of the probability at t− 1)

Opponent policy at episode t:

• Chosen as an exponential moving average of all past agent actions in ht: pt = α.xt−1 + (1− α).pt−1,∀t > 1, where pt is
the opponent’s probability of choosing a1 (defect) at episode t

• The opponent starts off unbiased (p1 = 0.5)
• We set the weight parameter, α = 0.7, to better approximate the latest agent policy (recall, the agent can only change its

policy with a limited speed)

Algorithms and convergence:

• EXP3 was run with learning rate η = 0.01; increasing eta only made the divergence faster



• TS was run with Gaussian priors on arms, with µ as empirical mean, and σ2 as (100/count); using Gaussian priors allowed
us to smooth out the priors with higher variance, as a way to ensure the agent contraint on speed of update.

• Both algorithms are value-greedy in the sense of Defn. 17. By Lemma 11, they converge to the Nash equilibrium and diverge
from the optimal policy, as shown in Fig. 9.

Figure 9: Results for EXP3 and TS in Experiment 1
.

Experiment 2

Figure 10: Graph for the g-MAB in Experiment 2
.

Optimal policy πO(a0) = 1.0;πO(a1) = 0.0

Nash equilibrium πE(a0) = 0.0;πE(a1) = 1.0

Is optimal policy an equilibrium? No

Table 4: Optimal and equilibrium policy for Experiment 2

Agent policy: chosen according to algorithms EXP3, TS and TPSC .

Opponent policy at episode t: equal to agent policy πt.

Algorithms and convergence:
• EXP3, TS were run as per Experiment 1
• TPSC was run as per Algo. 1, with a discretization parameter, k = 10.
• EXP3, TS are value-greedy and converge to the Nash equilibrium and diverge from the optimal policy.
• TPSC is not value-greedy and discovers the optimal policy range (of the discretized intervals), as shown in Fig. 11.



Figure 11: Results for EXP3, TS and TPSC in Experiment 2
.

Experiment 3

Figure 12: Graph for the g-MAB in Experiment 3
.

it(a1) < 0.5 it(a1) ≥ 0.5

Optimal policy πO(a0) = 0.0;πO(a1) = 1.0 πO(a0) = 1.0;πO(a1) = 0.0

Nash equilibrium πE(a0) = 0.0;πE(a1) = 1.0 πE(a0) = 0.0;πE(a1) = 1.0

Is optimal policy an equilibrium? Yes No

Table 5: Optimal and equilibrium policy for Experiment 3

Agent policy: chosen according to algorithms EXP3, TS, TPS and TPSC .

Opponent policy at episode t:
• If agent’s intended probability of defecting it(a1) is under 0.5, then equal to agent’s intended policy, it
• If agent’s intended probability of defecting it(a1) is at least 0.5, then equal to agent actual policy πt

Algorithms and convergence:
• EXP3, TS were run as per Experiment 1
• TPSC , TPS were run as per Algo. 1 and 2, respectively, with a discretization parameter, k = 10.
• EXP3, TS are value-greedy and converge to the Nash equilibrium; this coincides with the optimal policy when agent’s in-

tended probability of defecting is under 0.5, but diverges from the optimal policy when the intended probability of defecting
is at least 0.5.

• TPSC , TPS are not value-greedy and approximate the optimal policy in both cases, as shown in Fig. 13. However, because
they are sensitive to original intent, they converge slower to their stationary policy than EXP3, TS.

• TPSC outperforms TPS in terms of regret, which does not make use of past observational data by exploiting the counter-
factual consistency axiom. In Fig. 13, we see TPSC converge more smoothly than TPS to the optimal policy.



Figure 13: Results for EXP3, TS, TPS and TPSC in Experiment 3
.


