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Abstract

Adversarial bandits are important in safety-critical or risk-averse settings where reward
distributions might change with great detriment to the learner. Recent variants of common algo-
rithms, like the LinEXP3 variant of the standard EXP3, explore how to improve regret guarantees
by making parametric assumptions like linearity. We introduce a novel algorithm CausalEXP3
that leverages knowledge of the underlying structural causal model to demonstrably reduce the
cumulative regret incurred during on-line learning. We apply this experimentally in the context
of Dynamic Treatment Regimes (DTR). First, we test it on a Lung Cancer DTR, involving
heavy confounding between variables. Second, we test it on a Drug-Offences Intervention DTR
under adversarial reward shift conditions. In both experiments, we demonstrate it outperforms
the same EXP3 algorithm that does not exploit structural causal knowledge.

1 Introduction

This report focuses on Adversarial Dynamic Treatment Regimes (DTR). DTRs are a powerful model
for multi-stage interventions with complex dependencies on all past interventions and historical
observations. For instance, in a multi-stage medical intervention such as chemotherapy sessions,
the optimal dosage for each visit depends on all the past visits as well as symptoms observed at
all past visits, as depicted in Figure 1. Other examples may be airline pricing strategies or prison
rehabilitation programs. The outcome is measured after all the interventions: survival rate, airline
revenue, 2-year recidivism etc. These can be highly risk-averse settings where we want to reduce
worst-case risk and prepare for adverse reward shift through time.

Figure 1: Example of a medical DTR with complex historical dependencies
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Further, there could be arbitrary causal dependencies or unobserved confounding with past variables.
Therefore, running regular Bandit algorithms would require that we fix all the interventions at the
very beginning as one vector of intervention values and explore this space of joint actions (e.g. fix
a vector of ⟨Chemo#1, ..., Chemo#11⟩ at the start and explore this space). Alternatively, if we
want to truly optimise the treatment at every stage based on all past variables (i.e. we know previous
values when deciding an intervention) then we incur a massive exploration cost because we must
account for the product of the cardinalities of domains of all past variables for each intervention.

Fortunately, we can make use of a Structural Causal Model (SCM) (7) to drastically reduce the
policy space that we actually need to explore. Intuitively, if an oncologist informs us that last
month’s blood pressure and inflammation markers are not relevant given this month’s WBC count,
we can leverage that information to explore fewer arms. In doing so, we contribute to the growing
field of Causal Reinforcement Learning, where incorporating inductive bias (expert knowledge in
the form of a causal diagram) can improve existing algorithms.

2 Contributions

To the best of our knowledge, this project is the first to explicitly use SCMs for Adversarial Bandits,
or in the Adversarial DTR setting. This project improves upon the well-known algorithm EXP3
and introduces a new version, CausalEXP3, which uses importance-weighted exploration and the
properties of Causal Bayesian Networks (1) to simultaneously achieve

• Better sample complexity to convergence in experiments using simulated data

• Robustness to reward shift over time (e.g. if the cancer metastasises in response to treatment)

Work in progress: a provably better theoretical regret bound than EXP3

3 Related Works

DTRs have been studied extensively since they were formulated in 2003. Chakraborty et al (2014)
(2) offer a comprehensive survey of the field, including estimation methods.

This has been predominantly studied as a planning problem. If the model is fully known, efficient
offline methods exist to compute optimal sequential treatment plans. Also, these methods typically
assume there is no causal confounding in the MDP representing the DTR, which is a strong (and
potentially fatal) assumption in many applications. Wang et al (2012) (9) illustrate how a patient’s
symptoms and cancer remission are often confounded by unobserved latent variables.

Tian (2008) (8) first proposed methods to compute causal effects in DTRs with unobserved con-
founding. Zhang & Bareinboim (2019) (10) use this to develop the first on-line algorithm for DTRs,
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and in Zhang & Bareinboim (2020) (11) improve upon this by exploiting sparsity in dependencies.
However, these only address the stochastic setting, and are unlikely to be robust in the face of
adversarial reward shift. Hu & Kallus (2020) (3) present an interesting DTR Bandit solution for
continuous variables, but only under linearity assumption and for a 2-step decision process.

On the Adversarial Bandits side, Neu & Olkhovskaya (2020) (6) recently introduced a series of
improvements to the EXP3 algorithm under the linear realizability assumption. We intend to follow
a similar approach to theirs in improving the EXP3 regret bound, except by incorporating causal
assumptions instead of linearity assumptions.

4 Set Up

4.1 Structural Causal Models (SCM)

An SCM (7) is a tuple ⟨U,V,F , P (u)⟩, where U refers to exogenous variables, V refers to
endogenous variables and F refers to the set of functions that determines the values of V ∈ V from
its parents and exogenous variables. Bold letters represent sets of variables. Upper-case letters refer
to random variables and lower-case variables are a shorthand for those variables taking a specific
value. E.g P (x, z1, z2) is shorthand for P (X = x, Z1 = z1, Z2 = z2).

Each SCM is associated with a Directed Acyclic Graph (DAG), G. Figure 2 shows a DAG for a
sample DTR. By convention, we only depict endogenous variables (V) in the DAG. Bidirected
edges between nodes indicates causal confounding: the unobserved parents of these nodes are
correlated (or they share noise variables).

Figure 2: (a) Graph G for a sample DTR; (b) Graph Gπ for the DTR under a policy π from the
policy space Π = {⟨Z1 → X1⟩, ⟨Z1, X1, Z2 → X2⟩}; red arrows indicate that the policy decides
Xi based on its historical context set; (c) G[Z] contains only {Z1, Z2} and arrows between them
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4.2 Graphs for Dynamic Treatment Regimes (DTR)

The graph G induces a topological ordering corresponding to temporal ordering, with interventions
Xi ∈ X indexed by the time-step of the intervention. Y represents the final loss outcome we want
to minimize. Zi ∈ Z refers to any covariate that is observed before Xi, and after Xi−1 (if any). For
each Xi, let Hi refer to the set of all "context" variables (historical covariates and past treatments)
that are used to determine the intervention Xi. In Figure 2(a), H1 = {Z1} and H2 = {Z1, Z2, X1}.

We review some graph-theoretic definitions we will use frequently (optional):

• C(A) is the c-component (8) containing A in the graph specified. This includes all the nodes
to which there is a path from A containing only bidirected arrows (including A). E.g., in
Figure 2(a) C(Z1) in G contains all nodes, while in 2(b) C(Z1) in Gπ contains only {Z1, Y }.

• G[A] is the sub-graph of G containing only A and its arrows. E.g., Figure 2(c) shows G[Z].

• PaA refers to the direct parents (7) of nodes in A (including A itself).

• Fix a topological ordering ≺ over G. Extended parents (1) of a variable V ∈ V are defined as

Pa+V = Pa({Vi ∈ C(V )|Vi ⪯ V }) \ {V }, with C(V ) defined in G[V]

In words, take the c-component containing V in G[V]. Consider only the nodes up to V in the
partial ordering, and their parents in G. These are the extended parents of V . Note that we
exclude V . E.g., for the graph G in Figure 2, Pa+Z1

= ∅ and Pa+Z2
= {X1}

ΩV refers to the domain of the variable V , and |ΩV | is the cardinality of the domain (we only
consider discrete variables in this project).

The policy space Π of the DTR is a set of mappings {⟨ΩHi
→ ΩXi

⟩}, to the domain of each
intervention Xi from the domains of its context variables Hi. I.e., this the set of Bandit "arms" to
explore. If we are restricting Π to only deterministic policies, we can ignore previous interventions
in each subsequent policy search. For Figure 2, a deterministic policy space would be

Π = {⟨ΩZ1 → ΩX1⟩, ⟨ΩZ1,Z2 → ΩX2⟩}

5 Efficient Exploration of DTR Policy Space

If we were running EXP3 naively on the policy space Π the total number of arms we would need
to explore is

∏n
i |ΩHi

→ ΩXi
|, which is massive for even moderately-sized discrete domains.

However, we can use d-separation and c-component factorization to make this more efficient.

The efficient planning algorithms mentioned in Section 3 won’t work here, since the model is
unknown and we make no parametric assumptions about the data-generating process. We only know
the graph G and the policy space Π, and need to learn on-line, assuming adversarial loss selection.
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5.1 Removing Irrelevant Information

Zhang et al (2020) (11) propose a 2-step iterated procedure called REDUCE which removes
"irrelevant" treatments and covariates that don’t add any value, even if they are causal ancestors.
These rules essentially exploit independence constraints (e.g., a doctor might say that, given last
month’s chemotherapy dosage and bio-markers, the dosage information for prior visits isn’t needed).

The result is a minimal graph and policy space that contains only "relevant" treatments and covariates.
In this project, we will assume that REDUCE has already been applied to the problem, and that the
Π we work with is minimal. We also marginalise from the graph any variables that are not in Z, X
or Y , to get a minimal G. Figure 2 shows one such minimal G and Π.

5.2 Decomposing the Expected Reward

Lemma 1: Given a minimal DTR graph G and a policy π from the minimal policy space Π as
defined in previous sections, we can express the expected reward under π as follows,

E[Y |do(π)] =
∑
x,z

E[Y |do(x), z].P (z|do(x))
n∏

i=1

π(xi|hi) (1)

Refer to Appendix A for proof.

We know the probabilities of each xi under a given policy π (if we are playing deterministic policies,
the product term on the right would be 1 for some Xi = xi and 0 everywhere else). So we are
effectively expressing the expected loss in terms of these quantities:

• E[Y |do(x), z]; and

• P (z|do(x)), for different possible values of x, z

We will proceed with the rest of the project, assuming for ease of exposition that E[Y |do(x), z] is
known and P (z|do(x)) is unknown. The same sampling procedure in our CausalEXP3 algorithm 1
can be easily extended to discover E[Y |do(x), z] as well.

Lemma 2: Given a minimal DTR graph G and a policy π from the minimal policy space Π as
defined in previous sections, we can express the unknown quantity from Equation 1 as follows,

P (z|do(x)) =
∏
Zi∈Z

P (zi|do(xi−), pa+Zi
) (2)

where Xi− refers to the interventions temporally preceding Zi.

This is a straightforward consequence of Tian (2008, Theorem 1) (8) and Zhang et al (2020,
Corollary 2) (11). We now believe it is more intuitive to express such decompositions using the
Semi-Markovian factorization notation in Bareinboim et al (2020, Definition 15) (1), in terms of
extended parent sets.
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6 CausalEXP3 Algorithm

In the LinEXP3 algorithm (6), Neu & Olkhovskaya parameterize the loss for each arm as a linear
function with an unknown parameter. With each pull of an arm, we get information about other arms
in all non-orthogonal directions in the linear parameter space. We follow the same principle with
CausalEXP3, where each pull of an arm allows us to get more information by belief propagation in
the graph via the decomposition given by Eq. 2, at Steps 4 and 5 below.

Algorithm 1 CausalEXP3
Input:

• Minimal graph G, containing only interventions X, covariates Z, loss outcome Y

• Minimal deterministic policy space Π

• Learning rate η

Define:
• nt(a): empirical frequency of any event (A = a) up to episode t

• N = |Π|, the number of policy arms to explore

• wt ∈ RN : a vector of weights assigned to each policy at episode t

Initialize: w1 = (1, 1, 1, 1...)
for episode t = 1, 2...T do

1. Let

pt(j) =
wt(j)∑N

j′=1wt(j′)

2. Sample an arm πt ∼ pt
3. Perform do(πt) and observe xt, zt
4. For each Zi ∈ Z, compute the empirical estimate for the estimands in Eq. 2

P̂t(zi|do(xi−), pa+Zi
) =

nt(zi, pa
+
Zi
)

max{nt(pa
+
Zi
), 1}

5. For each π ∈ Π, compute the loss estimate by Eq. 1, and apply importance-weighting

lt(j) =
∑
x,z

E[Y |do(x), z].P̂ (z|do(x))
n∏

i=1

πj(xi|hi)

l̃t(j) =
lt(j)

pt(j)

6. Update wt+1(j)← wt(j) exp(−η.l̃t(j))
end for
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6.1 Comparison with Naive EXP3: Policy Search

For a full description of a Naive EXP3 algorithm for DTRs, refer to Appendix C. We illustrate
the difference between the two algorithms using the example DTR in Figure 2. Let us assume all
variables are binary.

Fact 3: Given a deterministic policy space Π, for a DTR with n interventions, the number of policy
arms to explore (without making any parametric assumptions) is

|Π| =
n∏

i=1

Ω
ΩHi\Xi−

Xi

where (Hi \X i−) is the set of covariates with arrows into Xi.

For the example DTR in Figure 2, we have:

• Deterministic policy space, Π = {⟨ΩZ1 → ΩX1⟩, ⟨ΩZ1,Z2 → ΩX2⟩}

• Number of policies, |Π| = (|X1||Z1|).(|X2||Z1|.|Z2|) = (22).(24) = 256

Table 1: Difference in policy search under both algorithms for Figure 2 DTR
Naive EXP3 CausalEXP3

Policy arms 256 256
Updates per episode 1 256

Updates per episode for Only πt All π ∈ Π
Update method Importance-weighting Importance-weighting

Update using Actual loss (lt|πt) Expected loss Ê[lt|π]

6.2 Comparison with Naive EXP3: Run-Time

Unfortunately, CausalEXP3 incurs a hefty cost for updating estimators and the whole weight vector
in each episode t, as illustrated in Table 2

6.3 Comparison with Naive EXP3: Regret Bounds

Fact 4: The expected regret bound for Naive EXP3, over a deterministic DTR policy space Π, when
setting learning rate η =

√
log|Π|/(|Π|T ) is

E[TotalRegretT ] ≤
√

2|Π|T. log |Π|
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Table 2: Difference in run-time complexity of each algorithms for Figure 2 DTR
Naive EXP3 CausalEXP3

Sampling πt log |Π| = 6 6
Querying DTR’s SCM 1 (constant) 1

Updating estimators -
∑

i |ΩZi
|.|ΩXi− | = 2.1 + 2.2 = 6

Weight updates 1 (constant) ∼ |Π|.|ΩX|.|ΩZ| = 256.4.4 = 4096
Total run-time per t 8 ∼ 4109

where |Π| =
∏n

i=1Ω
ΩHi\Xi−

Xi
, when we don’t make any parametric assumptions.

Unfortunately, we have not yet proved a theoretical regret guarantee for CausalEXP3. We are
working on it and are confident that the regret is provably lower, based on the following experiments.

7 Experiments

We conducted two sets of experiments. Coding a multi-step DTR proved tricky and buggy, so we
chose experiments with specific goals in mind.

• The first experiment implements a DTR for Lung Cancer Treatment, with the goal of
gauging performance when there is heavy confounding among variables (we hide relevant
variables to mimic unobserved confounding).

• The second experiment is a DTR for Drug-Offence Correctional Interventions. We assume
no confounding but rather test performance under an adversarial reward shift, by switching
data-generating probabilities midway through an epoch (graph remains the same).

7.1 Lung Cancer Treatment

7.1.1 DTR Description

In this experiment, we implement a popular DTR for lung-cancer, introduced by Nease Jr & Owens
(1997) (5). The verbal description of their proposed multi-stage treatment is in Appendix D. This
multi-stage proposal was used to build the SCM for this experiment.

Figure 3(a) is the graph for the multi-stage treatment regime described in Appendix D. Table 3
details the variable labels and domains. We consistently use 0 to mean "Yes", 1 to mean "No" and 2
to mean "N/A". For any variable H , we use the notation P (h0) to refer to P (H = 0).
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Figure 3: (a) Graph for Lung Cancer DTR in Nease & Owens (1997), with variables described
in Table 3; (b) Marginalized graph with Treatments = {H, I}, Covariates = {G,C}, Outcome
= {F}; (c) Graph under policy from deterministic space Π = {⟨ΩG → ΩH⟩, ⟨ΩG,C → ΩI⟩}

Table 3: Variables for the Lung Cancer DTR depicted in Figure 3
Variable Description Domain

A CT Result 0,1,2
B Mediastinal Metastases 0,1
C Mediastinoscopy Result 0,1,2
D Treatment Death 0,1
E Mediastinoscopy Death 0,1
F Life Expectancy 0,1
G CT? 0,1
H Mediastinoscopy? 0,1
I Treatment? 0,1

We only retain the covariates (G,C), the intervention decisions (H, I) and fix Life Expectancy
(F ) as the outcome we want to optimise for. We treat the other variables as confounders, inducing a
marginalized DTR graph in Figure 3(b). The candidate policy space is Π = {⟨ΩG → ΩH⟩, ⟨ΩG,C →
ΩI⟩}. Recall that we are only considering deterministic policies in this project, so for the intervention
on (I) we don’t have to optimize for (H) as it is fully determined by (G). However, (H) still factors
in the decision to implement (I) or not. The intervention graph is in Figure 3(c).

7.1.2 Experiment Steps

1. We initialize a random SCM compatible with the graph in Figure 3. For reference, the
data-generating probabilities we used are listed in Appendix E, Table 5
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2. We define our candidate policy space as

• Π = {⟨ΩG → ΩH⟩, ⟨ΩG,C → ΩI⟩}
• Number of policy "arms", |Π| = 22.24 = 256

3. We recognize the optimal policy π∗ (according to Appendix E, Table 6) as

• π∗ = do(h1, i1)

• E[F |do(π∗)] = 0.5891

4. We define regret of a policy πt vs. optimal policy as Regretπ = 0.5891− E[F |do(πt)]

5. We run for a total of T = 10, 001 episodes,

• Naive EXP3, updating exactly one weight value (for our sampled πt) in each episode

• CausalEXP3 with our decomposition estimands E[F |do(h, i), c], P̂ (g), P̂ (c|do(h))
• We use a learning rate, η = 1/T

6. We track the following: one-step reward and cumulative regret, every 500 episodes

7. We repeat this experiment 100 times, and average over the runs to give us stable results

7.1.3 Results and Analysis

The parameters and metrics we track are:

• Number of runs = 100

• Number of episodes per run, T = 10, 001

• Instantaneous Reward at episode t, Rewardt = ft

• Cumulative Regret at episode t, TotalRegrett =
∑

t(0.5891− ft)

Note that TotalRegrett is an unbiased estimator of the total regret of policies chosen until that
time-step,

∑
t Regretπt

.

Figure 4 shows the Instantaneous Reward plotted over the training sequence (averaged over 100
runs). As we can see, the results are noisy, but the regression line shows no increase in Reward for
Naive EXP3, and a steady increase for CausalEXP3.

Figure 5 shows a clearer illustration of the advantage. Cumulative Regret (averaged over 100 runs)
for Naive EXP3 is linear in t, essentially as good as random guesses even after 10,000 episodes.
However, the same for CausalEXP3 shows a sub-linear dependency on t and appears to flatten out.
This means that CausalEXP3 will very likely converge to the optimal policy, given time.
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Figure 4: Reward per episode t, averaged over 100 runs; trend-line shows (a) Reward is not
increasing using Naive EXP3; (b) Reward is increasing on average using CausalEXP3

Figure 5: Cumulative Regret is almost linear in t for Naive EXP3, but is sub-linear and heading
to convergence for CausalEXP3

7.2 Drug-Offence Corrections Program

7.2.1 DTR Description

For this experiment, we devise a DTR for drug-court interventions, based on the adaptive treatment
proposed by Marlowe et al (2008) (4). To keep things computationally tractable, we deviate slightly
in our SCM design from the description of the original proposal, available in Appendix F.

Figure 6 is the graph for the multi-stage treatment regime described in Appendix F. Table 4 details
the variable labels and domains. We consistently use 0 to mean "No", 1 to mean "Yes", except for
variable D where numbers index the intervention options. For any variable X , we use the notation
P (x0) to refer to P (X = 0).
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Figure 6: Graph for Drug Corrections DTR in Marlowe et al (2008), with variables described
in Table 4; We assume no confounding, but focus on testing adversarial reward shifts in this
experiment (e.g. drug-offenders start gaming the system after feedback from peers)

Table 4: Variables for the Drug-Offence Corrections DTR depicted in Figure 6
Variable Description Domain

A High Risk 0,1
B Court Hearings? 0,1
C Counselling Session Compliance 0,1
D Bi-weekly court sessions, As-needed, or Jeopardy Contract? 0,1,2
E Responsive to Drug Test 0,1
F Rehabilitation within Budget 0,1

For this DTR, the covariates are (A,C,E), the intervention decisions are (B,D) and our outcome
of interest is (F ), whether the offender is rehabilitated within the per-person budget. The candidate
policy space is Π = {⟨ΩA → ΩB⟩, ⟨ΩC,E → ΩD⟩}.

7.2.2 Experiment Steps

1. We initialize two random SCMs compatible with the graph in Figure 6. For half the training
lifetime, we will assume the DTR operates according to SCM1, and half-way through we will
switch to SCM2 to mimic adversarial reward shift (e.g. the community of drug offenders
starts trying to game the system). For reference, the data-generating SCM probabilities are
listed in Appendix G, Tables 7, 9

2. We define our candidate policy space as

• Π = {⟨ΩA → ΩB⟩, ⟨ΩC,E → ΩD⟩}
• Number of policy "arms", |Π| = 22.34 = 324

3. We recognize the optimal policy π∗ (according to Appendix G, Tables 8, 10) as

• π∗ = do(b1, d2) :- impose Court Hearings + Jeopardy Contracts
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• E[F |do(π∗)] = 0.7211

4. We define regret of a policy πt vs. optimal policy as Regretπ = 0.7211− E[F |do(πt)]

5. We run for a total of T = 10, 001 episodes,

• Naive EXP3, updating the weight value for our sampled πt in each episode

• CausalEXP3 with estimands E[F |do(b, d)], P̂ (a), P̂ (c|do(b), a), P̂ (e|do(b))
• We use a learning rate, η = 1/T

• For t <=5000, we sample from SCM1; for t > 5000 we sample from SCM2 (simulating
adversarial reward shift)

6. We track the one-step reward and cumulative regret, every 500 episodes

7. We repeat this experiment 50 times, and average over the runs to give us stable results

7.2.3 Results and Analysis

The parameters and metrics we track are:

• Number of runs = 50

• Number of episodes per run, T = 10, 001

• Instantaneous Reward at episode t, Rewardt = ft

• Cumulative Regret at episode t, TotalRegrett =
∑

t(0.7221− ft)

Figure 7 shows the Instantaneous Reward plotted over the training sequence (averaged over 50
runs). The results are noisy, but the regression line shows that Naive EXP3 takes a hit from the
adversarial reward shift at t = 5000 from which it does not recover. CausalEXP3 also drops due to
the shift, but manages to slowly climb up thereafter.

Figure 8 corroborates the causal advantage. Cumulative Regret (averaged over 50 runs) for Causal-
EXP3 is below that of Naive EXP3 after 10,000 episodes. However, it is worrying that Causal-
EXP3’s regret seems linear in t after the reward shift, instead of sub-linear. This could perhaps
be improved by building estimators that detect any change in the transition probabilities we are
tracking, so that CausalEXP3 doesn’t continue to use outdated estimates for its updates.
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Figure 7: Reward per episode t, averaged over 50 runs; adversarial reward shift happens at
t = 5000; trend-line shows (a) Reward drops and decreases in 2nd half for Naive EXP3; (b)
Reward drops in 2nd half but still increases slowly for CausalEXP3

Figure 8: Cumulative Regret is definitely lower for CausalEXP3; however, regret doesn’t seem
to converge for CausalEXP3 after reward shift, showing that CausalEXP3 is still relying on
outdated estimates for its weight updates

8 Limitations and Future Work

Our experiment on adversarial reward shift was limited to just one transition, since this proved
challenging to code and was heavy on compute (>2 hours). We intend to continue this exploration of
reward shift, especially on trying to build estimators that detect such shifts and refresh the estimates
being tracked. The current algorithm may incur heavy bias over time if using estimates that don’t
re-set occasionally. Another easy extension is applying the causal decomposition to FTRL and
FTPL algorithms which are close cousins of EXP3 with attractive properties.
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More pressingly, the experimental results are still not satisfying for a real-world application (we
typically can’t experiment with over 2000 patients to hone in on the right dosage of chemotherapy).
Infusing parametric assumptions about the functional forms or monotonicity under treatment may
yield more powerful performance guarantees.

9 Conclusion

DTRs are a powerful framework for complex, multi-stage interventions such as medicine, epidemi-
ology and finance. However, current on-line algorithms are either very restrictive in their parametric
assumptions, limited in time-steps, or assume stable reward distributions. The last assumption in
particular is worrying, since applications like epidemiology could well see adversarial reward shift
(e.g. a strain of disease developing antibiotic resistance with aggressive treatment).

We propose a novel algorithm, CausalEXP3, to address this gap in the literature. CausalEXP3
uses the constraints in the causal graph to significantly reduce the amount of exploration actually
needed. We applied this experimentally to DTRs for Lung Cancer Treatment and Drug-Offence
Corrections and showed that it outperformed a naive implementation of the same algorithm, despite
heavy confounding and adversarial reward shifts.

15



References
[1] Bareinboim, Elias, Juan Correa, Duligur Ibeling and Thomas Icard. 2020. "On Pearl’s Hierarchy and

the Foundations of Causal Inference." In Probabilistic and Causal Inference: The Works of Judea Pearl,
ACM Turing Series

[2] Chakraborty, Bibhas, and Susan A Murphy. 2014. “Dynamic Treatment Regimes.” In Annual review of
statistics and its application vol. 1: 447-464. doi:10.1146/annurev-statistics-022513-115553

[3] Hu, Yichun and Nathan Kallus. 2020. "DTR Bandit: Learning to Make Response-Adaptive Decisions
With Low Regret". arXiv:2005.02791 [stat.ML]. URL: https://doi.org/10.48550/arXiv.2005.02791

[4] Marlowe, Douglas B., David S. Festinger, Patricia L. Arabia, Karen L. Dugosh, Kathleen M. Benasutti,
Jason R. Croft and James R. Mackay. 2008. "Adaptive interventions in drug court: a pilot experiment."
In Criminal Justice Review; 33(3):343–360

[5] Nease, Robert F. Jr. and Douglas K. Owens. 1997. "Use of Influence Diagrams to Structure Medical
Decisions." In Medical Decision Making;17(3):263-275.

[6] Neu, Gergely and Julia Olkhovskaya. 2020. "Efficient and robust algorithms for adversarial linear
contextual bandits." In Proceedings of the 33rd Annual Conference on Learning Theory

[7] Pearl, Judea. 2009. Causality: Models, Reasoning, and Inference. 2nd ed. New York: Cambridge
University Press

[8] Tian, Jin. 2008. "Identifying dynamic sequential plans." In Proceedings of the 24th Conference on
Uncertainty in Artificial Intelligence

[9] Wang, Lu, Andrea Rotnitzky, Xihong Lin, Randall E. Millikan, and Peter F. Thall. 2012. "Evaluation of
Viable Dynamic Treatment Regimes in a Sequentially Randomized Trial of Advanced Prostate Cancer."
In Journal of the American Statistical Association, 107(498)

[10] Zhang, Junzhe and Elias Bareinboim. 2019. "Near-Optimal Reinforcement Learning in Dynamic
Treatment Regimes." In Proceedings of the 33rd Annual Conference on Neural Information Processing
Systems

[11] Zhang, Junzhe and Elias Bareinboim. 2020. "Designing Optimal Dynamic Treatment Regimes: A
Causal Reinforcement Learning Approach." In Proceedings of the 37th International Conference on
Machine Learning

16

https://doi.org/10.48550/arXiv.2005.02791


A Proof of Lemma 1

E[Y |do(π)]

=
∑
x,z

E[Y,x, z|do(π)]

=
∑
x,z

E[Y |x, z, do(π)].P (x, z|do(π))

=
∑
x,z

E[Y |do(x), do(π), z].P (x, z|do(π)) Rule 2: (Y ⊥ X|Z) in GπX

=
∑
x,z

E[Y |do(x), z].P (x, z|do(π)) Rule 3: (Y ⊥ π|X,Z) in GX

=
∑
x,z

E[Y |do(x), z].P (z|x, do(π)).P (x|do(π))

=
∑
x,z

E[Y |do(x), z].P (z|do(x), do(π)).P (x|do(π)) Rule 2: (Z ⊥ X) in GπX

=
∑
x,z

E[Y |do(x), z].P (z|do(x)).P (x|do(π)) Rule 3: (Z ⊥ π|X) in GX

=
∑
x,z

E[Y |do(x), z].P (z|do(x))
n∏

i=1

π(xi|hi) Markovian factorization

For details of how to apply the rules of do-calculus, refer to Pearl (2009) (7).

Graphically, an intervention π can be thought of as a parent-less node pointing into each Xi.

B CausalEXP3 Regret Bound

Work in progress.
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C Naive EXP3 algorithm for DTRs

Algorithm 2 EXP3 (for DTR policies)
Input:

• Minimal graph G, with only interventions X, covariates Z, outcome Y

• Deterministic policy space Π

• Learning rate η

Define:
• N = |Π|, the number of policy arms to explore

• wt ∈ RN : a vector of weights assigned to each policy at episode t

Initialize: w1 = (1, 1, 1, 1...)
for episode t = 1, 2...T do

1. Let

pt(πj) =
wt(j)∑N

j′=1wt(j′)

2. Sample an arm πt ∼ pt
3. Perform do(πt) and observe xt, zt, yt
4. For each π ∈ Π, compute the importance weighted loss

lt(πt) = yt

l̃t(π) =
lt(πt).I[π = πt]

pt(π)

5. Update wt+1(j)← wt(j). exp[−ηl̃(πj)]
end for
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D Lung Cancer DTR Description

The below description from Nease Jr & Owens (1997) (5) is used to form the graph and SCM
depicted in Figure 3, and the variables in Table 3:

Consider the case of a patient with a known nonsmall-cell carcinoma of the lung. The
primary tumor is 1cm in diameter; a chest x-ray examination suggests that the tumor
does not abut the chest wall or mediastinum. Additional workup reveals no evidence
of distance metastases. The preferred treatment in such a situation is thoracotomy,
followed by lobectomy or pneumonectomy, depending on whether the primary tumor
has metastasized to the hilar lymph nodes. Of fundamental importance in the decision
to perform thoracotomy is the likelihood of mediastinal metastases. If mediastinal
metastases are known to be present, most clinicians would deem thoracotomy to be
contraindicated: thoracotomy subjects the patient to a risk of death but confers no
health benefit...If mediastinal metastases are known to be absent, thoracotomy offers a
substantial survival advantage, so long as the primary tumor has not metastasized to
distant organs. There are several diagnostic tests available to assess any involvement of
the mediastinum. For this example, we shall focus on computed tomography (CT) of
the chest and mediastinoscopy. Our problem involves three decisions. First, should the
patient undergo a CT scan? Second, given our decision about CT and any CT results
obtained, should the patient undergo mediastinoscopy? Third, given the results of any
tests that we have decided to perform, should the patient undergo thoracotomy?
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E Lung Cancer SCM Probabilities

Table 5: "True" probabilities for sample SCM generated for Lung Cancer DTR in Figure 3
A: P (a0|b0, g0) = 0.2841 P (a1|b0, g0) = 0.5005

P (a0|b0, g1) = 0.4862 P (a1|b0, g1) = 0.4792
P (a0|b1, g0) = 0.4680 P (a1|b1, g0) = 0.4077
P (a0|b1, g1) = 0.0330 P (a1|b1, g1) = 0.6757

B: P (b0) = 0.5417 P (b1) = 0.4583
C: P (c0|b0, h0) = 0.4103 P (c1|b0, h0) = 0.1062

P (c0|b0, h1) = 0.3080 P (c1|b0, h1) = 0.4666
P (c0|b1, h0) = 0.3997 P (c1|b1, h0) = 0.5083
P (c0|b1, h1) = 0.3017 P (c1|b1, h1) = 0.3389

D: P (d0|i0) = 0.4328 P (d0|i1) = 0.2731
E: P (e1|h0) = 0.1473 P (e1|h1) = 0.8849
F: P (f1|b0, d0, e0, i0) = 0.1491 P (f1|b0, d0, e0, i1) = 0.9693

P (f1|b0, d0, e1, i0) = 0.0177 P (f1|b0, d0, e1, i1) = 0.2382
P (f1|b0, d1, e0, i0) = 0.8229 P (f1|b0, d1, e0, i1) = 0.9601
P (f1|b0, d1, e1, i0) = 0.2460 P (f1|b0, d1, e1, i1) = 0.8257
P (f1|b1, d0, e0, i0) = 0.0937 P (f1|b1, d0, e0, i1) = 0.2567
P (f1|b1, d0, e1, i0) = 0.5303 P (f1|b1, d0, e1, i1) = 0.1900
P (f1|b1, d1, e0, i0) = 0.4400 P (f1|b1, d1, e0, i1) = 0.3264
P (f1|b1, d1, e1, i0) = 0.6326 P (f1|b1, d1, e1, i1) = 0.3320

G: P (g0) = 0.2546 P (g1) = 0.7454
H: P (h1|a0, g0) = 0.9456 P (h1|a0, g1) = 0.4239

P (h1|a1, g0) = 0.7273 P (h1|a1, g1) = 0.6931
P (h1|a2, g0) = 0.4035 P (h1|a2, g1) = 0.4228

I: P (i0|a, c0, e0, g0, h0) = 0.1576 P (P (i0|a, c0, e0, g0, h1)) = 0.8491
P (i0|a, c0, e0, g1, h0) = 0.4218 P (P (i0|a, c0, e0, g1, h1)) = 0.6555
P (i0|a, c0, e1, g0, h0) = 0.4854 P (P (i0|a, c0, e1, g0, h1)) = 0.7577
P (i0|a, c0, e1, g1, h0) = 0.9595 P (P (i0|a, c0, e1, g1, h1)) = 0.0318
P (i0|a, c1, e0, g0, h0) = 0.9706 P (P (i0|a, c1, e0, g0, h1)) = 0.9340
P (i0|a, c1, e0, g1, h0) = 0.9157 P (P (i0|a, c1, e0, g1, h1)) = 0.1712
P (i0|a, c1, e1, g0, h0) = 0.8003 P (P (i0|a, c1, e1, g0, h1)) = 0.7431
P (i0|a, c1, e1, g1, h0) = 0.6557 P (P (i0|a, c1, e1, g1, h1)) = 0.2769
P (i0|a, c2, e0, g0, h0) = 0.9572 P (P (i0|a, c2, e0, g0, h1)) = 0.6787
P (i0|a, c2, e0, g1, h0) = 0.7922 P (P (i0|a, c2, e0, g1, h1)) = 0.7060
P (i0|a, c2, e1, g0, h0) = 0.1419 P (P (i0|a, c2, e1, g0, h1)) = 0.3922
P (i0|a, c2, e1, g1, h0) = 0.0357 P (P (i0|a, c2, e1, g1, h1)) = 0.0462
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Table 6: "True" values for CausalEXP3 estimands for sample SCM generated for Lung Cancer
DTR

G: P (g0) = 0.2546 P (g1) = 0.7454
C: P (c0|do(h0)) = 0.4055 P (c0|do(h1)) = 0.3051

P (c1|do(h0)) = 0.2904 P (c1|do(h1)) = 0.4081
P (c2|do(h0)) = 0.3041 P (c2|do(h1)) = 0.2868

F: E[F |do(h0, i0), c0] = 0.3559 E[F |do(h1, i0), c0] = 0.3759
E[F |do(h0, i0), c1] = 0.4546 E[F |do(h1, i0), c1] = 0.3707
E[F |do(h0, i0), c2] = 0.2677 E[F |do(h1, i0), c2] = 0.3845
E[F |do(h0, i1), c0] = 0.5406 E[F |do(h1, i1), c0] = 0.5919
E[F |do(h0, i1), c1] = 0.3854 E[F |do(h1, i1), c1] = 0.6303
E[F |do(h0, i1), c2] = 0.6794 E[F |do(h1, i1), c2] = 0.5276
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F Drug-Offence Corrections DTR Description

The below description from Nease Jr & Owens (1997) (5) is used to form the graph and SCM
depicted in Figure 6, and the variables in Table 4:

At entry into the program, offenders were classified as high risk for failure if they met
the criteria in the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition,
for antisocial personality disorder or had previously attended at least one formal drug
abuse intervention, excluding self-help groups; otherwise offenders were classified as
low risk. Offenders who were classified as high risk were assigned to biweekly court
hearings, whereas offenders classified as low risk were assigned to as-needed court
hearings. In addition to the court hearings, all offenders were required to attend weekly
group substance abuse counseling sessions and to provide weekly urine specimens.

Each offender’s progress in the program was assessed monthly. If at any monthly
assessment an offender had missed two or more counseling sessions without an excuse
or failed to provide two or more scheduled urine specimens, he/she was classified as
noncompliant, and the level of court supervision was increased. In particular, offenders
who were assigned to as-needed court hearings but did not comply moved to biweekly
court hearings; offenders who were assigned to biweekly court hearings but did not
comply were placed on a jeopardy contract in which further violation of the rules of
the program resulted in moving into a regular court system. If an offender attended
the scheduled counseling sessions, provided the urine specimens and did not commit
new infractions, but two or more urine specimens were drug-positive, then the offender
was classified as nonresponsive. In this case, the intensity and scope of the drug abuse
treatment were altered. More specifically, these offenders entered an intensive case
management program in which they were provided twice-weekly individual substance
abuse counseling sessions.
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G Drug-Offence Corrections SCM Probabilities

Table 7: "True" probabilities for sample SCM generated for Drug Correction DTR for first
half of all episodes

A: P (a0) = 0.4379 P (a1) = 0.5621
B: P (b0|a0) = 0.1164 P (b0|a1) = 0.8857
C: P (c0|a0, b0) = 0.801 P (c0|a1, b0) = 0.6638

P (c0|a0, b1) = 0.3137 P (c0|a1, b1) = 0.1879
D: P (d0|c0, b0) = 0.3111 P (d1|c0, b0) = 0.3741

P (d0|c0, b1) = 0.7275 P (d1|c0, b1) = 0.6911
P (d0|c1, b0) = 0.6368 P (d1|c1, b0) = 0.5336
P (d0|c1, b1) = 0.3116 P (d1|c1, b1) = 0.1193

E: P (e0|b0) = 0.82 P (e0|b1) = 0.1643
F: P (f1|b0, d0) = 0.5011 P (f1|b1, d0) = 0.5602

P (f1|b0, d1) = 0.7787 P (f1|b1, d1) = 0.3759
P (f1|b0, d2) = 0.755 P (f1|b1, d2) = 0.6166

Table 8: "True" values for CausalEXP3 estimands for Drug Correction DTR for first half of
all episodes

A: P (a0) = 0.4379 P (a1) = 0.5621
C: P (c0|do(b0), a0) = 0.801 P (c1|do(b0), a0) = 0.199

P (c0|do(b0), a1) = 0.6638 P (c1|do(b0), a1) = 0.3362
P (c0|do(b1), a0) = 0.3137 P (c1|do(b1), a0) = 0.6863
P (c0|do(b1), a1) = 0.1879 P (c1|do(b1), a1) = 0.8121

E: P (e0|do(b0)) = 0.82 P (e1|do(b0)) = 0.18
P (e0|do(b1)) = 0.1643 P (e1|do(b1)) = 0.8357

F: E[F |do(b0, d0)] = 0.5011 E[F |do(b1, d0)] = 0.5602
E[F |do(b0, d1)] = 0.7787 E[F |do(b1, d1)] = 0.3759
E[F |do(b0, d2)] = 0.755 E[F |do(b1, d2)] = 0.6166
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Table 9: "True" probabilities for sample SCM generated for Drug Correction DTR for second
half of all episodes

A: P (a0) = 0.7341 P (a1) = 0.2659
B: P (b0|a0) = 0.7231 P (b0|a1) = 0.1903
C: P (c0|a0, b0) = 0.4357 P (c0|a1, b0) = 0.2378

P (c0|a0, b1) = 0.7603 P (c0|a1, b1) = 0.5035
D: P (d0|c0, b0) = 0.7008 P (d1|c0, b0) = 0.6466

P (d0|c0, b1) = 0.6593 P (d1|c0, b1) = 0.4147
P (d0|c1, b0) = 0.6767 P (d1|c1, b0) = 0.1747
P (d0|c1, b1) = 0.2991 P (d1|c1, b1) = 0.8065

E: P (e0|b0) = 0.2696 P (e0|b1) = 0.6865
F: P (f1|b0, d0) = 0.5315 P (f1|b1, d0) = 0.4102

P (f1|b0, d1) = 0.3952 P (f1|b1, d1) = 0.685
P (f1|b0, d2) = 0.5807 P (f1|b1, d2) = 0.8256

Table 10: "True" values for CausalEXP3 estimands for Drug Correction DTR for second half
of all episodes

A: P (a0) = 0.7341 P (a1) = 0.2659
C: P (c0|do(b0), a0) = 0.4357 P (c1|do(b0), a0) = 0.5643

P (c0|do(b0), a1) = 0.2378 P (c1|do(b0), a1) = 0.7622
P (c0|do(b1), a0) = 0.7603 P (c1|do(b1), a0) = 0.2397
P (c0|do(b1), a1) = 0.5035 P (c1|do(b1), a1) = 0.4965

E: P (e0|do(b0)) = 0.2696 P (e1|do(b0)) = 0.7304
P (e0|do(b1)) = 0.6865 P (e1|do(b1)) = 0.3135

F: E[F |do(b0, d0)] = 0.5315 E[F |do(b1, d0)] = 0.4102
E[F |do(b0, d1)] = 0.3952 E[F |do(b1, d1)] = 0.685
E[F |do(b0, d2)] = 0.5807 E[F |do(b1, d2)] = 0.8256

24


	Introduction
	Contributions
	Related Works
	Set Up
	Structural Causal Models (SCM)
	Graphs for Dynamic Treatment Regimes (DTR)

	Efficient Exploration of DTR Policy Space
	Removing Irrelevant Information
	Decomposing the Expected Reward

	CausalEXP3 Algorithm
	Comparison with Naive EXP3: Policy Search
	Comparison with Naive EXP3: Run-Time
	Comparison with Naive EXP3: Regret Bounds

	Experiments
	Lung Cancer Treatment
	DTR Description
	Experiment Steps
	Results and Analysis

	Drug-Offence Corrections Program
	DTR Description
	Experiment Steps
	Results and Analysis


	Limitations and Future Work
	Conclusion
	Proof of Lemma 1
	CausalEXP3 Regret Bound
	Naive EXP3 algorithm for DTRs
	Lung Cancer DTR Description
	Lung Cancer SCM Probabilities
	Drug-Offence Corrections DTR Description
	Drug-Offence Corrections SCM Probabilities

